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3.1 Conductors and insulators
The earliest experimenters with electricity observed that substances dif-
fered in their power to hold the “Electrick Vertue.” Some materials could
be easily electrified by friction and maintained in an electrified state;
others, it seemed, could not be electrified that way, or did not hold the
Vertue if they acquired it. Experimenters of the early eighteenth cen-
tury compiled lists in which substances were classified as “electricks”
or “nonelectricks.” Around 1730, the important experiments of Stephen
Gray in England showed that the Electrick Vertue could be conducted
from one body to another by horizontal string, over distances of several
hundred feet, provided that the string was itself supported from above
by silk threads.1 Once this distinction between conduction and noncon-
duction had been grasped, the electricians of the day found that even a
nonelectrick could be highly electrified if it were supported on glass or
suspended by silk threads. A spectacular conclusion of one of the popu-
lar electric exhibitions of the time was likely to be the electrification of
a boy suspended by many silk threads from the rafters; his hair stood on
end and sparks could be drawn from the tip of his nose.

After the work of Gray and his contemporaries, the elaborate lists
of electricks and nonelectricks were seen to be, on the whole, a division
of materials into electrical insulators and electrical conductors. This dis-
tinction is still one of the most striking and extreme contrasts that nature
exhibits. Common good conductors like ordinary metals differ in their
electrical conductivity from common insulators like glass and plastics by
factors on the order of 1020. To express it in a way the eighteenth-century
experimenters like Gray or Benjamin Franklin would have understood, a
metal globe on a metal post can lose its electrification in a millionth of a
second; a metal globe on a glass post can hold its Vertue for many years.
(To make good on the last assertion we would need to take some precau-
tions beyond the capability of an eighteenth-century laboratory. Can you
suggest some of them?)

The electrical difference between a good conductor and a good insu-
lator is as vast as the mechanical difference between a liquid and a solid.
That is not entirely accidental. Both properties depend on the mobility
of atomic particles: in the electrical case, the mobility of the carriers of
charge, electrons or ions; in the case of the mechanical properties, the
mobility of the atoms or molecules that make up the structure of the
material. To carry the analogy a bit further, we know of substances whose
fluidity is intermediate between that of a solid and that of a liquid –
substances such as tar or ice cream. Indeed some substances – glass
is a good example – change gradually and continuously from a mobile

1 The “pack-thread” Gray used for his string was doubtless a rather poor conductor
compared with metal wire, but good enough for transferring charge in electrostatic
experiments. Gray found, too, that fine copper wire was a conductor, but mostly he
used the pack-thread for the longer distances.
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liquid to a very permanent and rigid solid with a few hundred degrees’
lowering of the temperature. In electrical conductivity, too, we find exam-
ples over the whole wide range from good conductor to good insulator,
and some substances that can change conductivity over nearly as wide a
range, depending on conditions such as their temperature. A fascinating
and useful class of materials called semiconductors, which we shall meet
in Chapter 4, have this property.

Whether we call a material solid or liquid sometimes depends on the
time scale, and perhaps also on the scale of distances involved. Natural
asphalt seems solid enough if you hold a chunk in your hand. Viewed
geologically, it is a liquid, welling up from underground deposits and
even forming lakes. We may expect that, for somewhat similar reasons,
whether a material is to be regarded as an electrical insulator or a
conductor will depend on the time scale of the phenomenon we are
interested in.

3.2 Conductors in the electrostatic field
We shall look first at electrostatic systems involving conductors. That is,
we shall be interested in the stationary state of charge and electric field
that prevails after all redistributions of charge have taken place in the
conductors. Any insulators present are assumed to be perfect insulators.
As we have already mentioned, quite ordinary insulators come remark-
ably close to this idealization, so the systems we shall discuss are not
too artificial. In fact, the air around us is an extremely good insulator.
The systems we have in mind might be typified by some such example as
this: bring in two charged metal spheres, insulated from one another and
from everything else. Fix them in positions relatively near one another.
What is the resulting electric field in the whole space surrounding and
between the spheres, and how is the charge that is on each sphere dis-
tributed? We begin with a more general question: after the charges have
become stationary, what can we say about the electric field inside con-
ducting matter?

In the static situation there is no further motion of charge. You might
be tempted to say that the electric field must then be zero within conduct-
ing material. You might argue that, if the field were not zero, the mobile
charge carriers would experience a force and would be thereby set in
motion, and thus we would not have a static situation after all. Such an
argument overlooks the possibility of other forces that may be acting on
the charge carriers, and that would have to be counterbalanced by an
electric force to bring about a stationary state. To remind ourselves that
it is physically possible to have other than electrical forces acting on the
charge carriers, we need only think of gravity. A positive ion has weight;
it experiences a steady force in a gravitational field, and so does an elec-
tron; also, the forces they experience are not equal. This is a rather absurd
example. We know that gravitational forces are utterly negligible on an
atomic scale.



3.2 Conductors in the electrostatic field 127

There are other forces at work, however, which we may very loosely
call “chemical.” In a battery and in many, many other theaters of chemi-
cal reaction, including the living cell, charge carriers sometimes move
against the general electric field; they do so because a reaction may
thereby take place that yields more energy than it costs to buck the
field. One hesitates to call these forces nonelectrical, knowing as we do
that the structure of atoms and molecules and the forces between them
can be explained in terms of Coulomb’s law and quantum mechanics.
Still, from the viewpoint of our classical theory of electricity, they must
be treated as quite extraneous. Certainly they behave very differently
from the inverse-square force upon which our theory is based. The gen-
eral necessity for forces that are in this sense nonelectrical was already
foreshadowed by our discovery in Chapter 2 that inverse-square forces
alone cannot make a stable, static structure (see Earnshaw’s theorem in
Section 2.12).

The point is simply this: we must be prepared to find, in some cases,
unbalanced, non-Coulomb forces acting on charge carriers inside a con-
ducting medium. When that happens, the electrostatic situation is attained
when there is a finite electric field in the conductor that just offsets the
influence of the other forces, whatever they may be.

Having issued this warning, however, we turn at once to the very
familiar and important case in which there is no such force to worry
about, the case of a homogeneous, isotropic conducting material. In the
interior of such a conductor, in the static case, we can state confidently
that the electric field must be zero.2 If it weren’t, charges would have
to move. It follows that all regions inside the conductor, including all
points just below its surface, must be at the same potential. Outside the
conductor, the electric field is not zero. The surface of the conductor
must be an equipotential surface of this field.

The vanishing of the electric field in the interior of a conductor
implies that the volume charge density ρ also vanishes in the interior.
This follows from Gauss’s law, ∇·E = ρ/ε0. Since the field is identically
zero inside the conductor, its divergence, and hence ρ, are also identically
zero. Of course, as with the field, this holds only in an average sense.
The charge density at the location of, say, a proton is most certainly
not zero.

Imagine that we could change a material from insulator to conduc-
tor at will. (It’s not impossible – glass becomes conducting when heated;
any gas can be ionized by x-rays.) Figure 3.1(a) shows an uncharged
nonconductor in the electric field produced by two fixed layers of charge.

2 In speaking of the electric field inside matter, we mean an average field, averaged over
a region large compared with the details of the atomic structure. We know, of course,
that very strong fields exist in all matter, including the good conductors, if we search
on a small scale near an atomic nucleus. The nuclear electric field does not contribute
to the average field in matter, ordinarily, because it points in one direction on one side
of a nucleus and in the opposite direction on the other side. Just how this average field
ought to be defined, and how it could be measured, are questions we consider in
Chapter 10.
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The electric field is the same inside the body as outside. (A dense body
such as glass would actually distort the field, an effect we will study in
Chapter 10, but that is not important here.) Now, in one way or another,
let mobile charges (or ions) be created, making the body a conductor.
Positive ions are drawn in one direction by the field, negative ions in the
opposite direction, as indicated in Fig. 3.1(b). They can go no farther
than the surface of the conductor. Piling up there, they begin themselves
to create an electric field inside the body which tends to cancel the orig-
inal field. And in fact the movement goes on until that original field is
precisely canceled. The final distribution of charge at the surface, shown
in Fig. 3.1(c), is such that its field and the field of the fixed external
sources combine to give zero electric field in the interior of the conduc-
tor. Because this “automatically” happens in every conductor, it is really
only the surface of a conductor that we need to consider when we are
concerned with the external fields.

(a)

(b)

(c)

With this in mind, let us see what can be said about a system of con-
ductors, variously charged, in otherwise empty space. In Fig. 3.2 we see
some objects. Think of them, if you like, as solid pieces of metal. They
are prevented from moving by invisible insulators – perhaps by Stephen
Gray’s silk threads. The total charge of each object, by which we mean
the net excess of positive over negative charge, is fixed because there
is no way for charge to leak on or off. We denote it by Qk, for the kth
conductor. Each object can also be characterized by a particular value
φk of the electric potential function φ. We say that conductor 2 is “at
the potential φ2.” With a system like the one shown, where no physical
objects stretch out to infinity, it is usually convenient to assign the poten-
tial zero to points infinitely far away. In that case φ2 is the work per unit
charge required to bring an infinitesimal test charge in from infinity and
put it anywhere on conductor 2. (Note, by the way, that this is just the
kind of system in which the test charge needs to be kept small, a point
raised in Section 1.7.)

Because the surface of a conductor in Fig. 3.2 is necessarily a sur-
face of constant potential, the electric field, which is −grad φ, must be
perpendicular to the surface at every point on the surface. Proceeding
from the interior of the conductor outward, we find at the surface an
abrupt change in the electric field; E is not zero outside the surface, and
it is zero inside. The discontinuity in E is accounted for by the pres-
ence of a surface charge, of density σ , which we can relate directly to
E by Gauss’s law. We can use a flat box enclosing a patch of surface
(Fig. 3.3), similar to the cylinder we used when considering the infinite

Figure 3.1.
The object in (a) is a neutral nonconductor. The charges in it, both
positive and negative, are immobile. In (b) the charges have been
released and begin to move. They will move until the final condition,
shown in (c), is attained.
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flat sheet in Section 1.13. However, here there is no flux through the
“bottom” of the box, which lies inside the conductor, so we conclude
that En = σ/ε0 (instead of the σ/2ε0 we found in Eq. (1.40)), where
En is the component of electric field normal to the surface. As we have
already seen, there is no other component in this case, the field being
always perpendicular to the surface. The surface charge must account
for the whole charge Qk. That is, the surface integral of σ over the
whole conductor must equal Qk. In summary, we can make the following
statements about any such system of conductors, whatever their shape
and arrangement:

f1

f3

f2

Q3

Q1

Q2

Figure 3.2.
A system of three conductors: Q1 is the charge
on conductor 1, φ1 is its potential, etc.
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Figure 3.3.
(a) Gauss’s law relates the electric field strength
at the surface of a conductor to the density of
surface charge; E = σ/ε0. (b) Cross section
through surface of conductor and box.

(1) E = 0 inside the material of a conductor;
(2) ρ = 0 inside the material of a conductor;
(3) φ = φk at all points inside the material and on the surface of the kth

conductor;
(4) At any point just outside the conductor, E is perpendicular to the sur-

face, and E = σ/ε0, where σ is the local density of surface charge;
(5) Qk =

∫
Sk

σ da = ε0
∫

Sk
E · da.

E is the total field arising from all the charges in the system, near
and far, of which the surface charge is only a part. The surface charge
on a conductor is obliged to “readjust itself” until relation (4) is fulfilled.
That the conductor presents a special case, in contrast to other surface
charge distributions, is brought out by the comparison in Fig. 3.4.

Example (A spherically symmetric field) A point charge q is located at
an arbitrary position inside a neutral conducting spherical shell. Explain why the
electric field outside the shell is the same as the spherically symmetric field due
to a charge q located at the center of the shell (with the shell removed, although
the point is that this doesn’t matter).

Solution The spherical shell has an inner surface and an outer surface. Between
these surfaces (inside the material of the conductor) we know that the electric
field is zero. So if we draw a Gaussian surface that lies entirely inside the material,
signified by the dashed line in Fig. 3.5, there is zero flux through it, so it must
enclose zero charge. The charge on the inner surface of the shell is therefore −q.
This leaves +q for the outer surface. The charge −q on the inner surface won’t
be uniformly distributed unless the point charge q is located at the center, but
that doesn’t concern us.

The only question is how the +q charge is distributed over the outer surface.
Imagine that we have removed this +q charge, so that we have only the point
charge q and the inner-surface charge −q. The combination of these charges pro-
duces zero field in the material of the conductor. It also produces zero field out-
side the conductor. This is true because field lines must have at least one end on
a charge (the other end may be at infinity); they can’t form closed loops because
the electric field has zero curl. However, in the present setup, external field lines
have no possibility of touching any of the charges on the inside, because the lines
can’t pass through the material of the conductor to reach them, since the field is
zero there. Therefore there can be no field lines outside the conductor.
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Figure 3.4.
(a) An isolated sheet of surface charge with
nothing else in the system. This was treated in
Fig. 1.26. The field was determined as σ/2ε0 on
each side of the sheet by the assumption of
symmetry. (b) If there are other charges in the
system, we can say only that the change in Ex at
the surface must be σ/ε0, with zero change in
Ey. Many fields other than the field of (a) above
could have this property. Two such are shown in
(b) and (c). (d) If we know that the medium on
one side of the surface is a conductor, we know
that on the other side E must be perpendicular
to the surface, with magnitude E = σ/ε0. E
could not have a component parallel to the
surface without causing charge to move.
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If we gradually add back on the outer-surface charge +q, it will distribute
itself in a spherically symmetric manner because it feels no field from the other
charges. Furthermore, due to this spherical symmetry, the outer-surface charge
will produce no field at the other charges (because a uniform shell produces
zero field in its interior), so we don’t have to worry about any shifting of these
charges.

Since the combination of the point charge and the inner-surface charge pro-
duces no field outside the shell, the external field is due only to the spherically
symmetric outer-surface charge. By Gauss’s law, the external field is therefore
radial (with respect to the center of the shell and not the point charge q) and has
magnitude q/4πε0r2. Note that the shape of the inner surface was irrelevant in
the above reasoning. If we have the setup shown in Fig. 3.6, the external field is
still spherically symmetric with magnitude q/4πε0r2.

q

–q on inner
surface

q on outer
surface

Figure 3.5.
A Gaussian surface (dashed line) inside the
material of a conducting spherical shell.

More generally, if the neutral conducting shell takes an odd nonspherical
shape, we can’t say that the external field is spherically symmetric. But we can
say that the external field, whatever it may be, is independent of the location of
the point charge q inside. Whatever the location, the external field equals the field
in a system where the point charge q is absent and where we instead dump a total
charge q on the shell (which will distribute itself in a particular manner).3

3 There is a slight subtlety that arises in this case, namely the effect of the outer-surface
charge on the inner-surface charge. It turns out that, as with the sphere, there is no
effect. We’ll see why in Section 3.3.
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Figure 3.7 shows the field and charge distribution for a simple sys-
tem like the one mentioned at the beginning of this section. There are
two conducting spheres, a sphere of unit radius carrying a total charge
of +1 unit, the other a somewhat larger sphere with total charge zero.
Observe that the surface charge density is not uniform over either of the
conductors. The sphere on the right, with total charge zero, has a nega-
tive surface charge density in the region that faces the other sphere, and a
positive surface charge on the rearward portion of its surface. The dashed
curves in Fig. 3.7 indicate the equipotential surfaces or, rather, their inter-
section with the plane of the figure. If we were to go a long way out, we
would find the equipotential surfaces becoming nearly spherical and the
field lines nearly radial, and the field would begin to look very much like
that of a point charge of magnitude 1 and positive, which is the net charge
on the entire system.

q

Figure 3.6.
The external field is radial even if the cavity
takes an odd shape.

Figure 3.7 illustrates, at least qualitatively, all the features we antic-
ipated, but we have an additional reason for showing it. Simple as the
system is, the exact mathematical solution for this case cannot be obtained

Figure 3.7.
The electric field around two spherical
conductors, one with total charge +1, and one
with total charge zero. Dashed curves are
intersections of equipotential surfaces with the
plane of the figure. Zero potential is at infinity.
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in a straightforward way. Our Fig. 3.7 was constructed from an approx-
imate solution. In fact, the number of three-dimensional geometrical
arrangements of conductors that permit a mathematical solution in closed
form is lamentably small. One does not learn much physics by concen-
trating on the solution of the few neatly soluble examples. Let us instead
try to understand the general nature of the mathematical problem such
a system presents.

3.3 The general electrostatic problem and the
uniqueness theorem

We can state the problem in terms of the potential function φ, for if
φ can be found, we can at once get E from it. Everywhere outside the
conductors, φ has to satisfy the partial differential equation we met in
Section 2.12, Laplace’s equation: ∇2φ = 0. Written out in Cartesian
coordinates, Laplace’s equation reads

∂2φ

∂x2 + ∂2φ

∂y2 + ∂2φ

∂z2 = 0. (3.1)

The problem is to find a function that satisfies Eq. (3.1) and also meets
the specified conditions on the conducting surfaces. These conditions
might have been set in various ways. It might be that the potential of
each conductor φk is fixed or known. (In a real system the potentials
may be fixed by permanent connections to batteries or other constant-
potential “power supplies.”) Then our solution φ(x, y, z) has to assume
the correct value at all points on each of the surfaces. These surfaces in
their totality bound the region in which φ is defined, if we include a large
surface “at infinity,” where we require φ to approach zero. Sometimes
the region of interest is totally enclosed by a conducting surface; then
we can assign this conductor a potential and ignore anything outside it.
In either case, we have a typical boundary-value problem, in which the
value the function has to assume on the boundary is specified for the
entire boundary.

One might, instead, have specified the total charge on each conduc-
tor, Qk. (We could not specify arbitrarily all charges and potentials; that
would overdetermine the problem.) With the charges specified, we have
in effect fixed the value of the surface integral of ∇φ over the surface of
each conductor (using fact (5) from Section 3.2, along with E = −∇φ).
This gives the mathematical problem a slightly different aspect. Or one
can “mix” the two kinds of boundary conditions.

A general question of some interest is this: with the boundary con-
ditions given in some way, does the problem have no solution, one solu-
tion, or more than one solution? We shall not try to answer this question
in all the forms it can take, but one important case will show how such
questions can be dealt with and will give us a useful result. Suppose
the potential of each conductor, φk, has been specified, together with
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the requirement that φ approach zero at infinite distance, or on a con-
ductor that encloses the system. We shall prove that this boundary-value
problem has no more than one solution. It seems obvious, as a matter
of physics, that it has a solution, for if we should actually arrange the
conductors in the prescribed manner, connecting them by infinitesimal
wires to the proper potentials, the system would have to settle down in
some state. However, it is quite a different matter to prove mathemati-
cally that a solution always exists, and we shall not attempt it. Instead,
we shall prove the following theorem.

Theorem 3.1 (Uniqueness theorem) Assuming that there is a solution
φ(x, y, z) for a given set of conductors with potentials φk, this solution
must be unique.

Proof The argument, which is typical of proofs of this sort, runs as
follows. Assume there is another function ψ(x, y, z) that is also a solu-
tion meeting the same boundary conditions. Now Laplace’s equation is
linear. That is, if φ and ψ satisfy Eq. (3.1), then so does φ + ψ or any
linear combination such as c1φ + c2ψ , where c1 and c2 are constants. In
particular, the difference between our two solutions, φ −ψ , must satisfy
Eq. (3.1). Call this function W:

W(x, y, z) ≡ φ(x, y, z) − ψ(x, y, z). (3.2)

Of course, W does not satisfy the boundary conditions. In fact, at the
surface of every conductor W is zero, because φ and ψ take on the same
value, φk, at the surface of a conductor k. Thus W is a solution of another
electrostatic problem, one with the same conductors but with all conduc-
tors held at zero potential.

We can now assert that if W is zero on all the conductors, then W
must be zero at all points in space. For if it is not, it must have either a
maximum or a minimum somewhere – remember that W is zero at infin-
ity as well as on all the conducting boundaries. If W has an extremum at
some point P, consider a sphere centered on that point. As we saw in Sec-
tion 2.12, the average over a sphere of a function that satisfies Laplace’s
equation is equal to its value at the center. This could not be true if the
center is a maximum or minimum. Thus W cannot have a maximum or
minimum;4 it must therefore be zero everywhere. It follows that ψ = φ

everywhere, that is, there can be only one solution of Eq. (3.1) that satis-
fies the prescribed boundary conditions.

In proving this theorem, we assumed that φ and ψ satisfied Laplace’s
equation. That is, we assumed that the region outside the conductors was
empty of charge. However, the uniqueness theorem actually holds even if

4 If you want to demonstrate this without invoking the “average over a sphere” fact, you
can use the related reasoning involving Gauss’s law: if the potential at P is a maximum
(or minimum), then E must point outward (or inward) everywhere around P. This
implies a net flux through a small sphere surrounding P, contradicting the fact that
there are no charges enclosed.
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there are charges present, provided that these charges are fixed in place.
These charges could come in the form of point charges or a continuous
distribution. The proof for this more general case is essentially the same.
In the above reasoning, you will note that we never used the fact that
φ and ψ satisfied Laplace’s equation, but rather only that their differ-
ence W did. So if we instead start with the more general Poisson’s equa-
tions, ∇2φ = −ρ/ε0 and ∇2ψ = −ρ/ε0, where the same ρ appears
in both of these equations, then we can take their difference to obtain
∇2W = 0. That is, W satisfies Laplace’s equation. The proof therefore
proceeds exactly as above, and we again obtain φ = ψ .

As a quick corollary to the uniqueness theorem, we can demonstrate
a remarkable fact as follows.

Corollary 3.2 In the space inside a hollow conductor of any shape
whatsoever, if that space itself is empty of charge, the electric field
is zero.

Proof The potential function inside the conductor, φ(x, y, z), must sat-
isfy Laplace’s equation. The entire boundary of this region, namely the
conductor, is an equipotential, so we have φ =φ0, a constant everywhere
on the boundary. One solution is obviously φ = φ0 throughout the vol-
ume. But there can be only one solution, according to the above unique-
ness theorem, so this is it. And then “φ = constant” implies E= 0,
because E = −∇φ.

This corollary is true whatever the field may be outside the con-
ductor. We are already familiar with the fact that the field is zero inside
an isolated uniform spherical shell of charge, just as the gravitational
field inside the shell of a hollow spherical mass is zero. The corollary
we just proved is, in a way, more surprising. Consider the closed metal
box shown partly cut away in Fig. 3.8. There are charges in the neigh-
borhood of the box, and the external field is approximately as depicted.
There is a highly nonuniform distribution of charge over the surface of
the box. Now the field everywhere in space, including the interior of the
box, is the sum of the field of this charge distribution and the fields of
the external sources. It seems hardly credible that the surface charge has
so cleverly arranged itself on the box that its field precisely cancels the
field of the external sources at every point inside the box. Yet this must
indeed be what has happened, in view of the above proof.

As surprising as this may seem for a hollow conductor, it is really
no more surprising than the fact that the charges on the surface of a
solid conductor arrange themselves so that the electric field is zero inside
the material of the conductor (which we know is the case, otherwise
charges in the interior would move). These two setups are related because
the interior of the solid conductor is neutral (since ∇ · E = ρ/ε0, and
E is identically zero). So if we remove this neutral material from the
solid conductor (a process that can’t change the electric field anywhere,
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–

–

E = 0

Figure 3.8.
The field is zero everywhere inside a closed
conducting box.

because we aren’t moving any particles with net charge), then we end up
with a hollow conductor with zero field inside.

The corollary is also consistent with what we know about field lines.
If there were field lines inside the shell, they would have to start at one
point on the shell and end at another (there can’t be any closed loops
because curl E = 0). But this would imply a nonzero potential differ-
ence between these two points on the shell, contradicting the fact that all
points on the shell have the same potential. Therefore there can be no
field lines inside the shell.

qb

qc

qd

A

r

Figure 3.9.
Point charges are located at the centers of
spherical cavities inside a neutral spherical
conductor. Another point charge is located far
away.

The absence of electric field inside a conducting enclosure is useful,
as well as theoretically interesting. It is the basis for electrical shielding.
For most practical purposes the enclosure does not need to be completely
tight. If the walls are perforated with small holes, or made of metallic
screen, the field inside will be extremely weak except in the immediate
vicinity of a hole. A metal pipe with open ends, if it is a few diameters
long, very effectively shields the space inside that is not close to either
end. We are considering only static fields of course, but for slowly vary-
ing electric fields these remarks still hold. (A rapidly varying field can
become a wave that travels through the pipe. Rapidly means here “in less
time than light takes to travel a pipe diameter.”)

Example (Charges in cavities) A spherical conductor A contains two
spherical cavities. The total charge on the conductor itself is zero. However, there
is a point charge qb at the center of one cavity and qc at the center of the other,
as shown in Fig. 3.9. A considerable distance r away is another charge qd . What



136 Electric fields around conductors

force acts on each of the four objects, A, qb, qc, qd? Which answers, if any, are
only approximate, and depend on r being relatively large?

Solution The short answer is that the forces on qb and qc are exactly zero,
and the forces on A and qd are exactly equal and opposite, with a magnitude
approximately equal to qd(qb + qc)/4πε0r2. The reasoning is as follows.

Let’s look at qb first; the reasoning for qc is the same. If the charge qb
weren’t present in the lower cavity, then the field inside this cavity would be zero,
due to the uniqueness theorem, as discussed above. This fact is independent of
whatever is going on with qc and qd . If we now reintroduce qb at the center of the
cavity, this induces a total charge −qb on the surface of the cavity (as we saw in
the example in Section 3.2). This charge is uniformly distributed over the surface
because qb is located at the center. This charge therefore doesn’t change the fact
that the field is zero at the center of the cavity. The force on qb is therefore zero.
The same reasoning applies to qc. Note that the force on qb would not be zero if
it were located off-center in the cavity.

Now let’s look at the conductor A. Since the total charge on A is zero, a
charge of qb +qc must be distributed over its outside surface, to balance the −qb
and −qc charges on the surfaces of the cavities. If qd were absent, the field out-
side A would be the symmetrical radial field, E = (qb + qc)/4πε0r2, with the
charge qb + qc uniformly distributed over the outside surface. The distribution
would indeed be uniform because the field inside the material of the conductor
is zero, and because we are assuming that there is no charge external to the con-
ductor. The setup is therefore spherically symmetric, as far as the outside surface
of the conductor is concerned. (Any effect of the interior charges on the outside
surface charge can be felt only through the field. And since the field is zero just
inside the outside surface, there is therefore no effect.)

If we now reintroduce the charge qd , its influence will slightly alter the
distribution of charge on the outside surface of A, but without affecting the total
amount. If qd is positive, then negative charge will be drawn toward the near side
of A, or equivalently positive charge will be pushed to the far side. Hence for large
r, the force on qd will be approximately equal to qd(qb + qc)/4πε0r2, but it will
be slightly more attractive than this; you can check that this is true for either
sign of qd(qb + qc). The force on A must be exactly equal and opposite to the
force on qd .

The exact value of the force on qd is the sum of the force just given, qd(qb+
qc)/4πε0r2, and the force that would act on qd if the total charge on and within
A were zero (it is qb + qc here). This latter force (which is always attractive) can
be determined by applying the “image charge” technique that we will learn about
in the following section; see Problem 3.13.

3.4 Image charges
About the simplest system in which the mobility of the charges in the
conductor makes itself evident is the point charge near a conducting
plane. Suppose the xy plane is the surface of a conductor extending out to
infinity. Let’s assign this plane the potential zero. Now bring in a positive
charge Q and locate it h above the plane on the z axis, as in Fig. 3.10(a).
What sort of field and charge distribution can we expect? We expect the
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positive charge Q to attract negative charge, but we hardly expect the
negative charge to pile up in an infinitely dense concentration at the foot
of the perpendicular from Q. (Why not?) Also, we remember that the
electric field is always perpendicular to the surface of a conductor, at the
conductor’s surface. Very near the point charge Q, on the other hand,
the presence of the conducting plane can make little difference; the field
lines must start out from Q as if they were leaving a point charge radially.
So we might expect something qualitatively like Fig. 3.10(b), with some
of the details still a bit uncertain. Of course the whole thing is bound to
be quite symmetrical about the z axis.
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Conducting
plane

x

y

z

Q

h
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h

h

rA A

+Q

–Q

θ
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But how do we really solve the problem? The answer is, by a trick,
but a trick that is both instructive and frequently useful. We find an easily
soluble problem whose solution, or a piece of it, can be made to fit the
problem at hand. Here the easy problem is that of two equal and oppo-
site point charges, Q and −Q. On the plane that bisects the line joining
the two charges, the plane indicated in cross section by the line AA in
Fig. 3.10(c), the electric field is everywhere perpendicular to the plane.
If we make the distance of Q from the plane agree with the distance h in
our original problem, the upper half of the field in Fig. 3.10(c) meets all
our requirements: the field is perpendicular to the plane of the conductor,
and in the neighborhood of Q it approaches the field of a point charge.

The boundary conditions here are not quite those that figured in
our uniqueness theorem in Section 3.3. The potential of the conductor
is fixed, but we have in the system a point charge at which the potential
approaches infinity. We can regard the point charge as the limiting case
of a small, spherical conductor on which the total charge Q is fixed. For
this mixed boundary condition – potentials given on some surfaces, total
charge on others – a uniqueness theorem also holds. If our “borrowed”
solution fits the boundary conditions, it must be the solution.

Figure 3.11 shows the final solution for the field above the plane,
with the density of the surface charge suggested. We can calculate the
field strength and direction at any point by going back to the two-charge
problem, Fig. 3.10(c), and using Coulomb’s law. Consider a point on the
surface, a distance r from the origin. The square of its distance from
Q is r2 + h2, and the z component of the field of Q, at this point, is
−Q cos θ/4πε0(r2 + h2). The “image charge,”−Q, below the plane con-
tributes an equal z component. Thus the electric field here is given by

Ez = −2Q
4πε0(r2 + h2)

cos θ = −2Q
4πε0(r2 + h2)

· h
(r2 + h2)1/2

= −Qh
2πε0(r2 + h2)3/2 . (3.3)

Figure 3.10.
(a) A point charge Q above an infinite plane conductor. (b) The field must
look something like this. (c) The field of a pair of opposite charges.
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Figure 3.11.
Some field lines for the charge above the plane.
The field strength at the surface, given by
Eq. (3.3), determines the surface charge
density σ .
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Returning to the actual setup with the conducting plane, we know
that in terms of the surface charge density σ , the electric field just above
the plane is Ez = σ/ε0. There is no factor of 2 in the denominator here,
because when using Gauss’s law with a small pillbox, there is zero field
below the conducting plane, so there is zero flux out the bottom of the
box. The field is indeed zero below the plane because we can consider
the conducting plane to be the top of a very large conducting sphere, and
we know that the field inside a conductor is zero. Using Ez = σ/ε0, the
density σ is given by

σ = ε0Ez = −Qh
2π(r2 + h2)3/2 . (3.4)

Let us calculate the total amount of charge on the surface by inte-
grating over the distribution:∫ ∞

0
σ · 2πr dr = −Qh

∫ ∞

0

r dr
(r2 + h2)3/2 = Qh

(r2 + h2)1/2

∣∣∣∣∞
0

= −Q.

(3.5)

This result was to be expected. It means that all the flux leaving the
charge Q ends on the conducting plane.

There is one puzzling point. We never said what the charge on the
conducting plane was, but what if we had chosen it to be zero before the
charge Q was put in place above it? (You might have just assumed this
was the case anyway.) How can the conductor now exhibit a net charge
−Q? The answer is that a compensating positive charge, +Q in amount,
must be distributed over the whole plane. The combination of the given
point charge Q and the surface density σ in Eq. (3.4) produces the Ez
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Q

R

Negative charge on top
surface of disk. Total: – Q

Positive charge on top and
bottom of disk. Total: +Q

h

Figure 3.12.
The distribution of charge on a conducting disk
with total charge zero, in the presence of a
positive point charge Q at height h above the
center of the disk. The actual surface charge
density at any point is of course the algebraic
sum of the positive and negative densities
shown.

field in Eq. (3.3), but nothing precludes us from superposing additional
charge on the conducting plane which will produce an additional field.

To see what is going on here, imagine that the conducting plane is
actually a metal disk, not infinite but finite and with a radius R � h. If a
charge +Q were to be spread uniformly over this disk, on both sides (so
Q/2 is on each side), the resulting surface density on each side would
be Q/2πR2, which would cause an electric field of strength Q/2πε0R2

normal to the plane of the disk. Since our disk is a conductor, on which
charge can move, the charge density and the resulting field strength will
be even less than Q/2πε0R2 near the center of the disk because of the
tendency of the charge to spread out toward the rim. In any case the field
of this distribution is smaller in order of magnitude by a factor h2/R2

than the field described by Eq. (3.3), because the latter field behaves like
1/h2 in the vicinity of r = 0. As long as R � h we were justified in
ignoring the former field, and of course it vanishes completely for an
unbounded conducting plane with R = ∞.

Figure 3.12 shows in separate plots the surface charge density σ ,
given by Eq. (3.4), and the distribution of the compensating charge Q
on the upper and lower surfaces of the disk. Here we have made R not
very much larger than h, in order to show both distributions clearly in the
same diagram. Note that the compensating positive charge has arranged
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Figure 3.13.
Equipotentials and field lines for a charged
conducting disk.
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itself in exactly the same way on the top and bottom surfaces of the disk,
as if it were utterly ignoring the pile of negative charge in the middle of
the upper surface! Indeed, it is free to do so, for the field of that negative
charge distribution plus that of the point charge Q that induced it has
horizontal component zero at the surface of the disk, and hence has no
influence whatsoever on the distribution of the compensating positive
charge.

The isolated conducting disk mentioned above belongs to another
class of soluble problems, a class that includes any isolated conductor in
the shape of a spheroid, an ellipsoid of revolution. Without going into the
mathematics5 we show in Fig. 3.13 some electric field lines and equipo-
tential surfaces around the conducting disk. The field lines are hyperbo-
las. The equipotentials are oblate ellipsoids of revolution enclosing the
disk. The potential φ of the disk itself, relative to infinity, turns out to be

φ0 = (π/2)Q
4πε0 a

, (3.6)

where Q is the total charge of the disk and a is its radius. (Written this
way, we see that φ0 is larger than the potential of a sphere of charge
Q and radius a, by a factor π/2.) Compare this picture with Fig. 2.12,
the field of a uniformly charged nonconducting disk. In that case the
electric field at the surface was not normal to the surface; it had a radial
component outward. If you could make that disk in Fig. 2.12 a conductor,
the charge would flow outward until the field in Fig. 3.13 was established.

5 Mathematically speaking, this class of problems is soluble because a spheroidal
coordinate system happens to be one of those systems in which Laplace’s equation
takes on a particularly simple form.
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According to the mathematical solution on which Fig. 3.13 is based, the
charge density at the center of the disk would then be just half as great as
it was at the center of the uniformly charged disk. This fact also follows
as a corollary to Problem 3.4.

Figure 3.13 shows us the field not only of the conducting disk, but
also of any isolated oblate spheroidal conductor. To see that, choose one
of the equipotential surfaces of revolution – say the one whose trace in
the diagram is the ellipse marked φ = 0.6 φ0. Imagine that we could
plate this spheroid with copper and deposit charge Q on it. Then the
field shown outside it already satisfies the boundary conditions: electric
field normal to surface; total flux Q/ε0. It is a solution, and in view of
the uniqueness theorem it must be the solution for an isolated charged
conductor of that particular shape. All we need to do is erase the field
lines inside the conductor. We can also imagine copperplating two of the
spheroidal surfaces, putting charge Q on the inner surface, −Q on the
outer. The section of Fig. 3.13 between these two equipotentials shows
us the field between two such concentric spheroidal conductors. The field
is zero elsewhere.

This suggests a general strategy. Given the solution for any electro-
static problem with the equipotentials located, we can extract from it the
solution for any other system made from the first by copperplating one
or more equipotential surfaces. Perhaps we should call the method “a
solution in search of a problem.” The situation was well described by
Maxwell:

“It appears, therefore, that what we should naturally call the inverse prob-
lem of determining the forms of the conductors when the expression for
the potential is given is more manageable than the direct problem of deter-
mining the potential when the form of the conductors is given.”6

If you worked Exercise 2.44, you already possess the raw material
for an important example. You found that a uniform line charge of finite
length has equipotential surfaces in the shape of prolate ellipsoids of rev-
olution. This solves the problem of the potential and field of any isolated
charged conductor of prolate spheroidal shape, reducing it to the rela-
tively easy calculation of the potential due to a line charge. You can try
it in Exercise 3.62.

3.5 Capacitance and capacitors
An isolated conductor carrying a charge Q has a certain potential φ0,
with zero potential at infinity; Q is proportional to φ0. The constant of
proportionality depends only on the size and shape of the conductor.
6 See Maxwell (1891). Every student of physics ought sometime to look into Maxwell’s

book. Chapter VII is a good place to dip in while we are on the present subject. At the
end of Volume I you will find some beautiful diagrams of electric fields, and shortly
beyond the quotation we have just given, Maxwell’s reason for presenting these figures.
One may suspect that he also took delight in their construction and their elegance.
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We call this factor the capacitance of that conductor and denote it by C:

Q = Cφ0 (3.7)

Obviously the units for C depend on the units in which Q and φ0 are
expressed. In our usual SI units, charge is measured in coulombs and
potential in volts, so the capacitance C is measured in coulombs/volt.
This combination of units is given its own name, the farad:

1 farad = 1
coulomb

volt
. (3.8)

Since one volt equals one joule per coulomb, a farad can be expressed in
terms of other units as7

1 farad = 1
C2 s2

kg m2 . (3.9)

For an isolated spherical conductor of radius a we know that φ0 =
Q/4πε0a. Hence the capacitance of the sphere, defined by Eq. (3.7),
must be

C = Q
φ0

= 4πε0a. (3.10)

For an isolated conducting disk of radius a, according to Eq. (3.6), Q =
8ε0aφ0, so the capacitance of such a conductor is C = 8ε0a. It is some-
what smaller than the capacitance of a sphere of the same radius. In other
words, the disk requires a smaller amount of charge to attain a given
potential than does the sphere. This seems reasonable.

The farad happens to be a gigantic unit; the capacitance of an iso-
lated sphere the size of the earth is only

Ce = 4πε0a = 4π

(
8.85 · 10−12 C2 s2

kg m3

)
(6.4 · 106 m)

≈ 7 · 10−4 C2 s2

kg m2 = 7 · 10−4 farad. (3.11)

But this causes no trouble. We deal on more familiar terms with the
microfarad (μF), 10−6 farad, and the picofarad (pF), 10−12 farad. Note
that the units of the constant ε0 can be conveniently expressed as farads/
meter. The capacitance will always involve one factor of ε0 and one net
power of length, so for conductors of a given shape, capacitance scales
as a linear dimension of the object.

That applies to single, isolated conductors. The concept of capac-
itance is also useful whenever we are concerned with charges on and
potentials of a general number of conductors. By far the most common

7 In Gaussian units, Q is measured in esu and φ0 in statvolts, so C is measured in
esu/statvolt. Since in Gaussian units the esu can be written in terms of other
fundamental units, you can show that the unit of capacitance is simply the centimeter,
so it needs no other name.
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case of interest is that of two conductors oppositely charged, with Q
and −Q, respectively. Here the capacitance is defined as the ratio of the
charge Q to the potential difference between the two conductors. The
object itself, comprising the two conductors, insulating material to hold
the conductors apart, and perhaps electrical terminals or leads, is called
a capacitor. Most electronic circuits contain numerous capacitors. The
parallel-plate capacitor is the simplest example.

Two similar flat conducting plates are arranged parallel to one
another, separated by a distance s, as in Fig. 3.14(a). Let the area of each
plate be A and suppose that there is a charge Q on one plate and −Q on
the other; φ1 and φ2 are the values of the potential at each of the plates.
Figure 3.14(b) shows in cross section the field lines in this system. Away
from the edge, the field is very nearly uniform in the region between the
plates. When it is treated as uniform, its magnitude must be (φ1 −φ2)/s.
The corresponding density of the surface charge on the inner surface of
one of the plates is

σ = ε0E = ε0(φ1 − φ2)

s
. (3.12)

If we may neglect the actual variation of E, and therefore of σ , which
occurs principally near the edge of the plates, we can write a simple
expression for the total charge, Q = Aσ , on one plate:

Q = A
ε0(φ1 − φ2)

s
(neglecting edge effects). (3.13)

Charge –Q
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(b)
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f2

f2

f1

f1

ChaChaChargergerge –QQQQ

Charge Q

Area A

Figure 3.14.
(a) Parallel-plate capacitor. (b) Cross section
of (a) showing field lines. The electric field is
essentially uniform inside the capacitor.



144 Electric fields around conductors

We should expect Eq. (3.13) to be more nearly accurate the smaller
the ratio of the plate separation s to the lateral dimension of the plates. Of
course, if we were to solve exactly the electrostatic problem, edge and all,
for a particular shape of plate, we could replace Eq. (3.13) by an exact
formula. To show how good an approximation Eq. (3.13) is, there are
listed in Fig. 3.15 values of the correction factor f by which the charge
Q given in Eq. (3.13) differs from the exact result, in the case of two
conducting disks at various separations. The total charge is always a bit
greater than Eq. (3.13) would predict. That seems reasonable as we look
at Fig. 3.14(b), for there is evidently an extra concentration of charge at
the edge, and even some charge on the outer surfaces near the edge.

f2

R

f1

s

Figure 3.15.
The true capacitance of parallel circular plates,
compared with the prediction of Eq. (3.13), for
various ratios of separation to plate radius. The
effect of the edge correction can be represented
by writing the charge Q as

Q = ε0A(φ1 − φ2)

s
f .

For circular plates, the factor f depends on s/R
as follows:

s/R f

0.2 1.286
0.1 1.167
0.05 1.094
0.02 1.042
0.01 1.023

We are not concerned now with the details of such corrections but
with the general properties of a two-conductor system, the capacitor. We
are interested in the relation between the charge Q on one of the plates
and the potential difference between the two plates. For the particular
system to which Eq. (3.13) applies, the quotient Q/(φ1 − φ2) is ε0A/s.
Even if this is only approximate, it is clear that the exact formula will
depend only on the size and geometrical arrangement of the plates. That
is, for a fixed pair of conductors, the ratio of charge to potential difference
will be a constant. We call this constant the capacitance of the capacitor
and denote it usually by C.

Q = C(φ1 − φ2). (3.14)

Thus the capacitance of the parallel-plate capacitor, with edge fields
neglected, is given by

C = ε0A
s

(3.15)

As with the above cases of the sphere and disk, this capacitance contains
one factor of ε0 and one net power of length. Figure 3.16 summarizes
the formulas for capacitance in both SI and Gaussian units. Refer to it
when in doubt. As usual, the differences stem from a factor 4πε0 in any
expression involving charge. Appendix C gives the derivation that 1 cm
(esu/statvolt) is equivalent to 1.11 · 10−12 farad (coulomb/volt).

In defining the capacitance of a system of two conductors, we assume
that their charges are equal and opposite (however, see the discussion
below). This is a reasonable definition, because if we hook up a battery
between two conductors that are initially neutral, then whatever charge
leaves one of them ends up on the other. So when we talk about the
“charge on the capacitor,” we mean the charge on either of the conductors;
the total charge of the system is zero, of course. Also, we define the
capacitance to be a positive quantity. It will automatically come out to
be positive if you remember that in Eq. (3.14) the charges Q and −Q are
associated with the potentials φ1 and φ2, respectively. But if you don’t
want to worry about the signs along the way, you can simply define the
capacitance as C = |Q|/|φ1 − φ2|.
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1 cm = 1.11 × 10–12 farad

C = a C =
cm
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Figure 3.16.
Summary of units associated with capacitance.

Any pair of conductors, regardless of shape or arrangement, can be
considered a capacitor. It just happens that the parallel-plate capacitor is
a common arrangement and one for which an approximate calculation
of the capacitance is very easy. Figure 3.17 shows two conductors, one
inside the other. We can call this arrangement a capacitor too. As a prac-
tical matter, some mechanical support for the inner conductor would be
needed, but that does not concern us. Also, to convey electric charge to
or from the conductors we would need leads, which are themselves con-
ducting bodies. Since a wire leading out from the inner body, numbered
1, necessarily crosses the space between the conductors, it is bound to
cause some perturbation of the electric field in that space. To minimize
this we may suppose the lead wires to be extremely thin, so that any
charge residing on them is negligible. Or we might imagine the leads
removed before the potentials are determined.

f2

f1

Q2
(i)

Q2
(o)

Q1

S

Figure 3.17.
A capacitor in which one conductor is enclosed
by the other.

In this system we can distinguish three charges: Q1, the total charge
on the inner conductor; Q(i)

2 , the amount of charge on the inner surface
of the outer conductor; Q(o)

2 , the charge on the outer surface of the outer
conductor. Observe first that Q(i)

2 must equal −Q1. As we have seen in
earlier examples, we know this because a surface such as S in Fig. 3.17
encloses both these charges and no others, and the flux through this
surface is zero. The flux is zero because on the surface S, lying, as it
does, in the interior of a conductor, the electric field is zero.
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Evidently the value of Q1 will uniquely determine the electric field
within the region between the two conductors and thus will determine
the difference between their potentials, φ1 − φ2. For that reason, if we
are considering the two bodies as “plates” of a capacitor, it is only Q1, or
its counterpart Q(i)

2 , that is involved in determining the capacitance. The
capacitance is given by

C = Q1

φ1 − φ2
. (3.16)

Q(o)
2 is here irrelevant, because piling more charge on the outer surface

of the outer conductor increases both φ1 and φ2 by the same amount
(because charge on a single conductor produces no electric field inside
the conductor), thereby leaving the difference φ1 −φ2 unchanged. The
complete enclosure of one conductor by the other makes the capaci-
tance independent of everything outside. If you wish, you can consider
this setup to be the superposition of the system consisting of the Q1

and Q(i)
2 =−Q1 conductors, plus the system consisting of the outer

conductor containing an arbitrary charge Q(o)
2 which doesn’t affect the

difference φ1 − φ2.

Example (Capacitance of two spherical shells) What is the capaci-
tance of a capacitor that consists of two concentric spherical metal shells? The
inner radius of the outer shell is a; the outer radius of the inner shell is b.

Solution Let there be charge Q on the inner shell and charge −Q on the outer
shell. As mentioned above, any additional charge on the outside surface of the
outer shell doesn’t affect the potential difference. The field between the shells is
due only to the inner shell, so it equals Q/4πε0r2. The magnitude of the potential
difference is therefore

�φ =
∫ a

b
E dr =

∫ a

b

Q dr
4πε0r2 = Q

4πε0

(
1
b
− 1

a

)
. (3.17)

The capacitance is then

C = Q
�φ

= 4πε0
1
b
− 1

a

= 4πε0ab
a − b

. (3.18)

We can check this result by considering the limiting case where the gap
between the conductors, a− b, is much smaller than b. In this limit the capacitor
should be essentially the same as a flat-plate capacitor with separation s = a− b
and area A = 4πr2, where r ≈ a ≈ b. And indeed, in this limit Eq. (3.18)
gives C ≈ 4πε0r2/s = ε0A/s, in agreement with Eq. (3.15). If we let r be the
geometric mean of a and b, then the equivalence is exact, because the product ab
in the numerator of C exactly equals r2.
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Also, in the a � b limit, Eq. (3.18) gives C = 4πε0b, which is the correct
result for the capacitance of an isolated sphere with radius b, with its counterpart
at infinity; see Eq. (3.10).
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Figure 3.18.
A general state of this system can be analyzed
as the superposition (d) of three states (a)–(c) in
each of which all conductors but one are at zero
potential.

3.6 Potentials and charges on several conductors
We have been skirting the edge of a more general problem, the relations
among the charges and potentials of any number of conductors of some
given configuration. The two-conductor capacitor is just a special case.
It may surprise you that anything useful can be said about the general
case. In tackling it, about all we can use is the uniqueness theorem and
the superposition principle. To have something definite in mind, con-
sider three separate conductors, all enclosed by a conducting shell, as
in Fig. 3.18. The potential of this shell we may choose to be zero; with
respect to this reference the potentials of the three conductors, for some
particular state of the system, are φ1, φ2, and φ3. The uniqueness theorem
guarantees that, with φ1, φ2, and φ3 given, the electric field is determined
throughout the system. It follows that the charges Q1, Q2, and Q3 on the
individual conductors are likewise uniquely determined.

We need not keep account of the charge on the inner surface of
the surrounding shell, since it will always be −(Q1 +Q2 +Q3). If you
prefer, you can let “infinity” take over the role of this shell, imagining
the shell to expand outward without limit. We have kept it in the picture
because it makes the process of charge transfer easier to follow, for some
people, if we have something to connect to.

Among the possible states of this system are ones with φ2 and φ3
both zero. We could enforce this condition by connecting conductors 2
and 3 to the zero-potential shell, as indicated in Fig. 3.18(a). As before,
we may suppose the connecting wires are so thin that any charge residing
on them is negligible. Of course, we really do not care how the specified
condition is brought about. In such a state, which we shall call state I, the
electric field in the whole system and the charge on every conductor is
determined uniquely by the value of φ1. Moreover, if φ1 were doubled,
that would imply a doubling of the field strength everywhere, and hence
a doubling of each of the charges Q1, Q2, and Q3. That is, with φ2 =
φ3 = 0, each of the three charges must be proportional to φ1. Stated
mathematically:

• State I (φ2 = φ3 = 0):

Q1 = C11φ1; Q2 = C21φ1; Q3 = C31φ1. (3.19)

The three constants, C11, C21, and C31, can depend only on the shape
and arrangement of the conducting bodies.

In just the same way we could analyze states in which φ1 and φ3
are zero, calling such a condition state II (Fig. 3.18(b)). Again, we find
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a linear relation between the only nonzero potential, φ2 in this case, and
the various charges:

• State II (φ1 = φ3 = 0):

Q1 = C12φ2; Q2 = C22φ2; Q3 = C32φ2. (3.20)

Finally, when φ1 and φ2 are held at zero, the field and the charges are
proportional to φ3:

• State III (φ1 = φ2 = 0):

Q1 = C13φ3; Q2 = C23φ3; Q3 = C33φ3. (3.21)

Now the superposition of three states like I, II, and III is also a pos-
sible state. The electric field at any point is the vector sum of the electric
fields at that point in the three cases, while the charge on a conductor is
the sum of the charges it carried in the three cases. In this new state the
potentials are φ1, φ2, and φ3, none of them necessarily zero. In short,
we have a completely general state. The relation connecting charges and
potentials is obtained simply by adding Eqs. (3.19) through (3.21):

Q1 = C11φ1 + C12φ2 + C13φ3,
Q2 = C21φ1 + C22φ2 + C23φ3,
Q3 = C31φ1 + C32φ2 + C33φ3. (3.22)

It appears that the electrical behavior of this system is characterized
by the nine constants C11, C12, . . . , C33. In fact, only six constants are
necessary, for it can be proved that in any system C12 = C21, C13 = C31,
and C23 = C32. Why this should be so is not obvious. Exercise 3.64 will
suggest a proof based on conservation of energy, but for that purpose
you will need an idea developed in Section 3.7. The C’s in Eq. (3.22) are
called the coefficients of capacitance. It is clear that our argument would
extend to any number of conductors.

A set of equations like Eq. (3.22) can be solved for the φ’s in terms
of the Q’s. That is, there is an equivalent set of linear relations of the form

φ1 = P11Q1 + P12Q2 + P13Q3,
φ2 = P21Q1 + P22Q2 + P23Q3,
φ3 = P31Q1 + P32Q2 + P33Q3. (3.23)

The P’s are called the potential coefficients; they could be computed
from the C’s, or vice versa.

We have here a simple example of the kind of relation we can expect
to govern any linear physical system. Such relations turn up in the study
of mechanical structures (connecting the strains with the loads), in the
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analysis of electrical circuits (connecting voltages and currents), and,
generally speaking, wherever the superposition principle can be applied.

1

2

r

s
t

Figure 3.19.
Two capacitor plates inside a conducting box.

Example (Capacitance coefficients for two plates) Figure 3.19 shows
in cross section a flat metal box in which there are two flat plates, 1 and 2,
each of area A. The potential of the box is chosen to be zero. The various dis-
tances separating the plates from each other and from the top and bottom of the
box, labeled r, s, and t in the figure, are to be assumed small compared with
the width and length of the plates, so that it will be a good approximation to
neglect the edge fields in estimating the charges on the plates. In this approxima-
tion, work out the capacitance coefficients, C11, C22, C12, and C21. Check that
C12 = C21.

2

1f1

f2 = 0

f = 0

f = 0

Er = f1 r

Es = f1 s

Et = 0

Figure 3.20.
The situation with the bottom plate grounded to
the box.

Solution With the potential of the box chosen to be zero, we can write, in
general,

Q1 = C11φ1 + C12φ2,

Q2 = C21φ1 + C22φ2. (3.24)

Consider the case where φ2 is made equal to zero by connecting plate 2 to the
box. Then (see Fig. 3.20) the fields in the three regions are Er = φ1/r, Es =
φ1/s, and Et = 0. Gauss’s law with a thin box completely surrounding plate 1
tells us that Q1 = ε0(AEr + AEs). Eliminating the E’s in favor of the φ’s gives

Q1 = ε0Aφ1

(
1
r
+ 1

s

)
�⇒ C11 = ε0A

(
1
r
+ 1

s

)
. (3.25)

Also, Gauss’s law with a box around plate 2 tells us that Q2 = −ε0(AEs + 0).
Hence,

Q2 = − ε0Aφ1
s

�⇒ C21 = − ε0A
s

. (3.26)

We can repeat the above arguments, but now with φ1 = 0 instead of φ2 = 0.
This basically just involves switching the 1’s and 2’s, and letting r → t (but s
remains s). We quickly find

C22 = ε0A
(

1
t
+ 1

s

)
and C12 = − ε0A

s
. (3.27)

As expected, C12 = C21. How do these four coefficients reduce to the C = ε0A/s
capacitance we found for a parallel-plate capacitor in Eq. (3.15)? That is the
subject of Problem 3.23.

3.7 Energy stored in a capacitor
Consider a capacitor of capacitance C, with a potential difference φ

between the plates. The charge Q is equal to Cφ. There is a charge Q
on one plate and −Q on the other. Suppose we increase the charge from
Q to Q+dQ by transporting a positive charge dQ from the negative to the
positive plate, working against the potential difference φ. The work that
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has to be done is dW = φ dQ = Q dQ/C. Therefore to charge the capac-
itor starting from the uncharged state to some final charge Qf requires
the work

W = 1
C

∫ Qf

0
Q dQ = Q2

f
2C

. (3.28)

This is the energy U that is “stored” in the capacitor. Since Qf = Cφ, it
can also be expressed by

U = 1
2

Cφ2 (3.29)

where φ is the final potential difference between the plates. Using Q =
Cφ again, we can also write the energy as U = Qφ/2. This result is
consistent with the energy we would obtain from Eq. (2.32); see Exer-
cise 3.65.

For the parallel-plate capacitor with plate area A and separation s,
we found the capacitance C = ε0A/s and the electric field E = φ/s.
Hence Eq. (3.29) is also equivalent to

U = 1
2

(
ε0A

s

)
(Es)2 = ε0E2

2
· As = ε0E2

2
· (volume). (3.30)

This agrees with our general formula, Eq. (1.53), for the energy stored in
an electric field.8

Equation (3.29) applies as well to the isolated charged conductor,
which can be thought of as the inner plate of a capacitor, enclosed by
an outer conductor of infinite size and potential zero. For the isolated
sphere of radius a, we found C = 4πε0a, so that U = (1/2)Cφ2 =
(1/2)(4πε0a)φ2 or, equivalently, U = (1/2)Q2/C = (1/2)Q2/4πε0a,
agreeing with the calculation in Problem 1.32 for the energy stored in the
electric field of the charged sphere.

The oppositely charged plates of a capacitor will attract one another;
some mechanical force will be required to hold them apart. This is obvi-
ous in the case of the parallel-plate capacitor, for which we could easily
calculate the force on the surface charge. But we can make a more general
statement based on Eq. (3.28), which relates stored energy to charge Q
and capacitance C. Suppose that C depends in some manner on a linear
coordinate x that measures the displacement of one “plate” of a capaci-
tor, which might be a conductor of any shape, with respect to the other.
Let F be the magnitude of the force that must be applied to each plate to
overcome their attraction and keep x constant. Now imagine the distance
x is increased by an increment �x with Q remaining constant and one

8 All this applies to the vacuum capacitor consisting of conductors with empty space in
between. As you may know from the laboratory, most capacitors used in electric
circuits are filled with an insulator or “dielectric.” We are going to study the effect of
that in Chapter 10.
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plate fixed. The external force F on the other plate does work F �x and,
if energy is to be conserved, this must appear as an increase in the stored
energy Q2/2C. That increase at constant Q is

�U = dU
dx

�x = Q2

2
d
dx

(
1
C

)
�x. (3.31)

Equating this to the work F �x we find

F = Q2

2
d
dx

(
1
C

)
. (3.32)

Example (Parallel-plate capacitor) Let’s verify that Eq. (3.32) yields the
correct force on a plate in a parallel-plate capacitor. If the plate separation is x,
Eq. (3.15) gives the capacitance as C = ε0A/x. So Eq. (3.32) gives the (attractive)
force as

F = Q2

2
d
dx

(
x

ε0A

)
= Q2

2ε0A
. (3.33)

Is this correct? We know from Eq. (1.49) that the force (per unit area) on a sheet
of charge equals the density σ times the average of the fields on either side. The
total force on the entire plate of area A is then the total charge Q = σA times the
average of the fields. The field is zero outside the capacitor, and it is σ/ε0 inside.
So the average of the two fields is σ/2ε0. (This is correctly the field due to the
other plate, which is the field that the given plate feels.) The force on the plate is
therefore

F = Q
σ

2ε0
= Q

Q/A
2ε0

= Q2

2ε0A
, (3.34)

as desired.

3.8 Other views of the boundary-value problem
It would be wrong to leave the impression that there are no general meth-
ods for dealing with the Laplacian boundary-value problem. Although
we cannot pursue this question much further, we shall mention some
useful and interesting approaches that you are likely to meet in future
study of physics or applied mathematics.

First, an elegant method of analysis, called conformal mapping, is
based on the theory of functions of a complex variable. Unfortunately it
applies only to two-dimensional systems. These are systems in which φ

depends only on x and y, for example, all conducting boundaries being
cylinders (in the general sense) with elements running parallel to z.
Laplace’s equation then reduces to

∂2φ

∂x2 + ∂2φ

∂y2 = 0, (3.35)
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Figure 3.21.
Field lines and equipotentials for two infinitely
long conducting strips.

with boundary values specified on some lines or curves in the xy plane.
Many systems of practical interest are like this or sufficiently like this
to make the method useful, quite apart from its intrinsic mathematical
interest. For instance, the exact solution for the potential around two long
parallel strips is easily obtained by the method of conformal mapping.
The field lines and equipotentials are shown in a cross-sectional plane
in Fig. 3.21. This provides us with the edge field for any parallel-plate
capacitor in which the edge is long compared with the gap. The field
shown in Fig. 3.14(b) was copied from such a solution. You will be able to
apply this method after you have studied functions of a complex variable
in more advanced mathematics courses.

Second, we mention a numerical method for finding approximate
solutions of the electrostatic potential with given boundary values. Sur-
prisingly simple and almost universally applicable, this method is based
on that special property of harmonic functions with which we are already
familiar: the value of the function at a point is equal to its average over
the neighborhood of the point. In this method the potential function φ

is represented by values at an array of discrete points only, including
discrete points on the boundaries. The values at nonboundary points are
then adjusted until each value is equal to the average of the neighbor-
ing values. In principle one could do this by solving a large number
of simultaneous linear equations – as many as there are interior points.
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But an approximate solution can be obtained by the following procedure,
called a relaxation method. Start with the boundary points of the array,
or grid, set at the values prescribed. Assign starting values arbitrarily to
the interior points. Now visit, in some order, all the interior points. At
each point reset its value to the average of the values at the four (for a
square grid) adjacent grid points. Repeat again and again, until all the
changes made in the course of one sweep over the network of interior
points are acceptably small. If you want to see how this method works,
Exercises 3.76 and 3.77 will provide an introduction. Whether conver-
gence of the relaxation process can be ensured, or even hastened, and
whether a relaxation method or direct solution of the simultaneous equa-
tions is the better strategy for a given problem, are questions in applied
mathematics that we cannot go into here. It is the high-speed computer,
of course, that makes both methods feasible.

3.9 Applications
The purpose of a lightning rod on a building is to provide an alternative
path for the lightning’s current on its way to ground, that is, a path that
travels along a metal rod as opposed to through the building itself. Should
the tip of the rod be pointed or rounded? The larger the field generated
by the tip, the better the chance that a conductive path for the lightning
is formed, meaning that the lightning is more likely to hit the rod than
some other point on the building. On one hand, a pointed tip generates
a large electric field very close to the tip, but on the other hand the field
falls off more quickly than the field due to a more rounded tip (you can
model the tip roughly as a small sphere). It isn’t obvious which of these
effects wins, but experiments suggest that a somewhat rounded tip has a
better chance of being struck.

Capacitors have many uses; we will look at a few here. Capacitors
can be used to store energy, for either slow discharge or fast discharge.
In the slow case, the capacitor acts effectively like a battery. Examples
include shake flashlights and power adapters. For the fast case, capacitors
also have the ability to release their energy very quickly (unlike a normal
battery). Examples include flashbulbs, stun guns, defibrillators, and the
National Ignition Facility (NIF), whose goal is to create sustained fusion.
The capacitor for a flashbulb might store 10 J of energy, while the huge
capacitor bank at the NIF can store 4 · 108 J.

In many electronic devices, capacitors are used to smooth out fluc-
tuations in the voltage in a DC circuit. If a capacitor is placed in parallel
with the load, it acts like a reserve battery. If the voltage from the power
supply dips, the capacitor will (temporarily) continue to push current
through the load.

The dynamic random access memory (DRAM) in your computer
works by storing charge on billions of tiny capacitors. Each capacitor
represents a bit of information; uncharged is 0, charged is 1. However, the
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this surface. Where is the energy, then? Is it stored in the field, as Eq. 2.45 seems
to suggest, or is it stored in the charge, as Eq. 2.43 implies? At the present stage
this is simply an unanswerable question: I can tell you what the total energy is,
and I can provide you with several different ways to compute it, but it is imperti-
nent to worry about where the energy is located. In the context of radiation theory
(Chapter 11) it is useful (and in general relativity it is essential) to regard the
energy as stored in the field, with a density

ε0

2
E2 = energy per unit volume. (2.46)

But in electrostatics one could just as well say it is stored in the charge, with a
density 1

2ρV . The difference is purely a matter of bookkeeping.
(iii) The superposition principle. Because electrostatic energy is quadratic

in the fields, it does not obey a superposition principle. The energy of a compound
system is not the sum of the energies of its parts considered separately—there are
also “cross terms”:

Wtot = ε0

2

∫
E2 dτ = ε0

2

∫
(E1 + E2)

2 dτ

= ε0

2

∫ (
E2

1 + E2
2 + 2E1 · E2

)
dτ

= W1 + W2 + ε0

∫
E1 · E2 dτ. (2.47)

For example, if you double the charge everywhere, you quadruple the total energy.

Problem 2.36 Consider two concentric spherical shells, of radii a and b. Suppose
the inner one carries a charge q, and the outer one a charge −q (both of them
uniformly distributed over the surface). Calculate the energy of this configuration,
(a) using Eq. 2.45, and (b) using Eq. 2.47 and the results of Ex. 2.9.

Problem 2.37 Find the interaction energy (ε0

∫
E1 · E2 dτ in Eq. 2.47) for two point

charges, q1 and q2, a distance a apart. [Hint: Put q1 at the origin and q2 on the z axis;
use spherical coordinates, and do the r integral first.]

2.5 CONDUCTORS

2.5.1 Basic Properties

In an insulator, such as glass or rubber, each electron is on a short leash, attached
to a particular atom. In a metallic conductor, by contrast, one or more electrons
per atom are free to roam. (In liquid conductors such as salt water, it is ions that
do the moving.) A perfect conductor would contain an unlimited supply of free
charges. In real life there are no perfect conductors, but metals come pretty close,
for most purposes.
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From this definition, the basic electrostatic properties of ideal conductors
immediately follow:

(i) E = 0 inside a conductor. Why? Because if there were any field, those
free charges would move, and it wouldn’t be electrostatics any more. Hmm . . .

that’s hardly a satisfactory explanation; maybe all it proves is that you can’t have
electrostatics when conductors are present. We had better examine what happens
when you put a conductor into an external electric field E0 (Fig. 2.42). Initially,
the field will drive any free positive charges to the right, and negative ones to the
left. (In practice, it’s the negative charges—electrons—that do the moving, but
when they depart, the right side is left with a net positive charge—the stationary
nuclei—so it doesn’t really matter which charges move; the effect is the same.)
When they come to the edge of the material, the charges pile up: plus on the right
side, minus on the left. Now, these induced charges produce a field of their own,
E1, which, as you can see from the figure, is in the opposite direction to E0. That’s
the crucial point, for it means that the field of the induced charges tends to cancel
the original field. Charge will continue to flow until this cancellation is complete,
and the resultant field inside the conductor is precisely zero.9 The whole process
is practically instantaneous.

(ii) ρρρ = 0 inside a conductor. This follows from Gauss’s law: ∇ · E = ρ/ε0.
If E is zero, so also is ρ. There is still charge around, but exactly as much plus as
minus, so the net charge density in the interior is zero.

(iii) Any net charge resides on the surface. That’s the only place left.
(iv) A conductor is an equipotential. For if a and b are any two points

within (or at the surface of) a given conductor, V (b) − V (a) = − ∫ b
a E · dl = 0,

and hence V (a) = V (b).
(v) E is perpendicular to the surface, just outside a conductor. Otherwise,

as in (i), charge will immediately flow around the surface until it kills off the
tangential component (Fig. 2.43). (Perpendicular to the surface, charge cannot
flow, of course, since it is confined to the conducting object.)

E1

E0

− +
− +
− +
− +
− +
− +
− +
− +
− +
− +
− +
− +
− +

FIGURE 2.42

9Outside the conductor the field is not zero, for here E0 and E1 do not tend to cancel.
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E

Conductor
E = 0

FIGURE 2.43

I think it is astonishing that the charge on a conductor flows to the surface.
Because of their mutual repulsion, the charges naturally spread out as much as
possible, but for all of them to go to the surface seems like a waste of the interior
space. Surely we could do better, from the point of view of making each charge
as far as possible from its neighbors, to sprinkle some of them throughout the
volume . . . Well, it simply is not so. You do best to put all the charge on the
surface, and this is true regardless of the size or shape of the conductor.10

The problem can also be phrased in terms of energy. Like any other free
dynamical system, the charge on a conductor will seek the configuration that
minimizes its potential energy. What property (iii) asserts is that the electrostatic
energy of a solid object (with specified shape and total charge) is a minimum
when that charge is spread over the surface. For instance, the energy of a sphere
is (1/8πε0)(q2/R) if the charge is uniformly distributed over the surface, as we
found in Ex. 2.9, but it is greater, (3/20πε0)(q2/R), if the charge is uniformly
distributed throughout the volume (Prob. 2.34).

2.5.2 Induced Charges

If you hold a charge +q near an uncharged conductor (Fig. 2.44), the two will
attract one another. The reason for this is that q will pull minus charges over to
the near side and repel plus charges to the far side. (Another way to think of it
is that the charge moves around in such a way as to kill off the field of q for
points inside the conductor, where the total field must be zero.) Since the negative
induced charge is closer to q, there is a net force of attraction. (In Chapter 3 we
shall calculate this force explicitly, for the case of a spherical conductor.)

When I speak of the field, charge, or potential “inside” a conductor, I mean in
the “meat” of the conductor; if there is some hollow cavity in the conductor, and

10By the way, the one- and two-dimensional analogs are quite different: The charge on a conducting
disk does not all go to the perimeter (R. Friedberg, Am. J. Phys. 61, 1084 (1993)), nor does the charge
on a conducting needle go to the ends (D. J. Griffiths and Y. Li, Am. J. Phys. 64, 706 (1996))—see
Prob. 2.57. Moreover, if the exponent of r in Coulomb’s law were not precisely 2, the charge on a
solid conductor would not all go to the surface—see D. J. Griffiths and D. Z. Uvanovic, Am. J. Phys.
69, 435 (2001), and Prob. 2.54g.
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within that cavity you put some charge, then the field in the cavity will not be zero.
But in a remarkable way the cavity and its contents are electrically isolated from
the outside world by the surrounding conductor (Fig. 2.45). No external fields
penetrate the conductor; they are canceled at the outer surface by the induced
charge there. Similarly, the field due to charges within the cavity is canceled,
for all exterior points, by the induced charge on the inner surface. However, the
compensating charge left over on the outer surface of the conductor effectively
“communicates” the presence of q to the outside world. The total charge induced
on the cavity wall is equal and opposite to the charge inside, for if we surround the
cavity with a Gaussian surface, all points of which are in the conductor (Fig. 2.45),∮

E · da = 0, and hence (by Gauss’s law) the net enclosed charge must be zero.
But Qenc = q + q induced , so q induced = −q. Then if the conductor as a whole is
electrically neutral, there must be a charge +q on its outer surface.

Example 2.10. An uncharged spherical conductor centered at the origin has a
cavity of some weird shape carved out of it (Fig. 2.46). Somewhere within the
cavity is a charge q. Question: What is the field outside the sphere?

Conductor

P

Cavity

−q

+q
q

r

FIGURE 2.46
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Solution
At first glance, it would appear that the answer depends on the shape of the cavity
and the location of the charge. But that’s wrong: the answer is

E = 1

4πε0

q

r2
r̂

regardless. The conductor conceals from us all information concerning the na-
ture of the cavity, revealing only the total charge it contains. How can this be?
Well, the charge +q induces an opposite charge −q on the wall of the cavity,
which distributes itself in such a way that its field cancels that of q, for all points
exterior to the cavity. Since the conductor carries no net charge, this leaves +q to
distribute itself uniformly over the surface of the sphere. (It’s uniform because the
asymmetrical influence of the point charge +q is negated by that of the induced
charge −q on the inner surface.) For points outside the sphere, then, the only thing
that survives is the field of the leftover +q, uniformly distributed over the outer
surface.

It may occur to you that in one respect this argument is open to challenge:
There are actually three fields at work here: Eq , E induced, and E leftover. All we
know for certain is that the sum of the three is zero inside the conductor, yet I
claimed that the first two alone cancel, while the third is separately zero there.
Moreover, even if the first two cancel within the conductor, who is to say they still
cancel for points outside? They do not, after all, cancel for points inside the cavity.
I cannot give you a completely satisfactory answer at the moment, but this much
at least is true: There exists a way of distributing −q over the inner surface so as
to cancel the field of q at all exterior points. For that same cavity could have been
carved out of a huge spherical conductor with a radius of 27 miles or light years or
whatever. In that case, the leftover +q on the outer surface is simply too far away
to produce a significant field, and the other two fields would have to accomplish
the cancellation by themselves. So we know they can do it . . . but are we sure
they choose to? Perhaps for small spheres nature prefers some complicated three-
way cancellation. Nope: As we’ll see in the uniqueness theorems of Chapter 3,
electrostatics is very stingy with its options; there is always precisely one way—
no more—of distributing the charge on a conductor so as to make the field inside
zero. Having found a possible way, we are guaranteed that no alternative exists,
even in principle.

If a cavity surrounded by conducting material is itself empty of charge, then the
field within the cavity is zero. For any field line would have to begin and end on the
cavity wall, going from a plus charge to a minus charge (Fig. 2.47). Letting that
field line be part of a closed loop, the rest of which is entirely inside the conductor
(where E = 0), the integral

∮
E · dl is distinctly positive, in violation of Eq. 2.19.

It follows that E = 0 within an empty cavity, and there is in fact no charge on the
surface of the cavity. (This is why you are relatively safe inside a metal car during
a thunderstorm—you may get cooked, if lightning strikes, but you will not be
electrocuted. The same principle applies to the placement of sensitive apparatus
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FIGURE 2.47

inside a grounded Faraday cage, to shield out stray electric fields. In practice,
the enclosure doesn’t even have to be solid conductor—chicken wire will often
suffice.)

Problem 2.38 A metal sphere of radius R, carrying charge q, is surrounded by a
thick concentric metal shell (inner radius a, outer radius b, as in Fig. 2.48). The
shell carries no net charge.

(a) Find the surface charge density σ at R, at a, and at b.

(b) Find the potential at the center, using infinity as the reference point.

(c) Now the outer surface is touched to a grounding wire, which drains off charge
and lowers its potential to zero (same as at infinity). How do your answers to
(a) and (b) change?

Problem 2.39 Two spherical cavities, of radii a and b, are hollowed out from the
interior of a (neutral) conducting sphere of radius R (Fig. 2.49). At the center of
each cavity a point charge is placed—call these charges qa and qb.

(a) Find the surface charge densities σa , σb, and σR .

(b) What is the field outside the conductor?

(c) What is the field within each cavity?

(d) What is the force on qa and qb?

R

a

b

FIGURE 2.48

qa

a R

qb

b

FIGURE 2.49
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(e) Which of these answers would change if a third charge, qc, were brought near
the conductor?

Problem 2.40

(a) A point charge q is inside a cavity in an uncharged conductor (Fig. 2.45). Is the
force on q necessarily zero?11

(b) Is the force between a point charge and a nearby uncharged conductor always
attractive?12

2.5.3 Surface Charge and the Force on a Conductor

Because the field inside a conductor is zero, boundary condition 2.33 requires that
the field immediately outside is

E = σ

ε0
n̂, (2.48)

consistent with our earlier conclusion that the field is normal to the surface. In
terms of potential, Eq. 2.36 yields

σ = −ε0
∂V

∂n
. (2.49)

These equations enable you to calculate the surface charge on a conductor, if you
can determine E or V ; we shall use them frequently in the next chapter.

In the presence of an electric field, a surface charge will experience a force;
the force per unit area, f, is σE. But there’s a problem here, for the electric field is
discontinuous at a surface charge, so what are we supposed to use: Eabove, Ebelow,
or something in between? The answer is that we should use the average of the two:

f = σE average = 1

2
σ(E above + E below). (2.50)

Eother

Patch

n

1
2

σ/�0

1
2

σ/�0

σ

FIGURE 2.50

11This problem was suggested by Nelson Christensen.
12See M. Levin and S. G. Johnson, Am. J. Phys. 79, 843 (2011).
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Why the average? The reason is very simple, though the telling makes it sound
complicated: Let’s focus our attention on a tiny patch of surface surrounding the
point in question (Fig. 2.50). (Make it small enough so it is essentially flat and
the surface charge on it is essentially constant.) The total field consists of two
parts—that attributable to the patch itself, and that due to everything else (other
regions of the surface, as well as any external sources that may be present):

E = E patch + E other .

Now, the patch cannot exert a force on itself, any more than you can lift yourself
by standing in a basket and pulling up on the handles. The force on the patch,
then, is due exclusively to E other, and this suffers no discontinuity (if we removed
the patch, the field in the “hole” would be perfectly smooth). The discontinuity is
due entirely to the charge on the patch, which puts out a field (σ/2ε0) on either
side, pointing away from the surface. Thus,

E above = E other + σ

2ε0
n̂,

E below = E other − σ

2ε0
n̂,

and hence

E other = 1

2
(E above + E below) = E average.

Averaging is really just a device for removing the contribution of the patch itself.
That argument applies to any surface charge; in the particular case of a con-

ductor, the field is zero inside and (σ/ε0)n̂ outside (Eq. 2.48), so the average is
(σ/2ε0)n̂, and the force per unit area is

f = 1

2ε0
σ 2n̂. (2.51)

This amounts to an outward electrostatic pressure on the surface, tending to draw
the conductor into the field, regardless of the sign of σ . Expressing the pressure
in terms of the field just outside the surface,

P = ε0

2
E2. (2.52)

Problem 2.41 Two large metal plates (each of area A) are held a small distance d
apart. Suppose we put a charge Q on each plate; what is the electrostatic pressure
on the plates?

Problem 2.42 A metal sphere of radius R carries a total charge Q. What is the force
of repulsion between the “northern” hemisphere and the “southern” hemisphere?
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+Q −Q

FIGURE 2.51

2.5.4 Capacitors

Suppose we have two conductors, and we put charge +Q on one and −Q on the
other (Fig. 2.51). Since V is constant over a conductor, we can speak unambigu-
ously of the potential difference between them:

V = V+ − V− = −
∫ (+)

(−)

E · dl.

We don’t know how the charge distributes itself over the two conductors, and
calculating the field would be a nightmare, if their shapes are complicated, but
this much we do know: E is proportional to Q. For E is given by Coulomb’s law:

E = 1

4πε0

∫
ρ

r2 r̂ dτ,

so if you double ρ, you double E. [Wait a minute! How do we know that dou-
bling Q (and also −Q) simply doubles ρ? Maybe the charge moves around into
a completely different configuration, quadrupling ρ in some places and halving it
in others, just so the total charge on each conductor is doubled. The fact is that
this concern is unwarranted—doubling Q does double ρ everywhere; it doesn’t
shift the charge around. The proof of this will come in Chapter 3; for now you’ll
just have to trust me.]

Since E is proportional to Q, so also is V . The constant of proportionality is
called the capacitance of the arrangement:

C ≡ Q

V
. (2.53)

Capacitance is a purely geometrical quantity, determined by the sizes, shapes, and
separation of the two conductors. In SI units, C is measured in farads (F); a farad
is a coulomb-per-volt. Actually, this turns out to be inconveniently large; more
practical units are the microfarad (10−6 F) and the picofarad (10−12 F).

Notice that V is, by definition, the potential of the positive conductor less
that of the negative one; likewise, Q is the charge of the positive conductor. Ac-
cordingly, capacitance is an intrinsically positive quantity. (By the way, you will
occasionally hear someone speak of the capacitance of a single conductor. In this
case the “second conductor,” with the negative charge, is an imaginary spherical
shell of infinite radius surrounding the one conductor. It contributes nothing to
the field, so the capacitance is given by Eq. 2.53, where V is the potential with
infinity as the reference point.)
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the correct value on the boundaries, then it’s right. You’ll see the power of this
argument when we come to the method of images.

Incidentally, it is easy to improve on the first uniqueness theorem: I assumed
there was no charge inside the region in question, so the potential obeyed
Laplace’s equation, but we may as well throw in some charge (in which case
V obeys Poisson’s equation). The argument is the same, only this time

∇2V1 = − 1

ε0
ρ, ∇2V2 = − 1

ε0
ρ,

so

∇2V3 = ∇2V1 − ∇2V2 = − 1

ε0
ρ + 1

ε0
ρ = 0.

Once again the difference (V3 ≡ V1 − V2) satisfies Laplace’s equation and has the
value zero on all boundaries, so V3 = 0 and hence V1 = V2.

Corollary: The potential in a volume V is uniquely determined if
(a) the charge density throughout the region, and (b) the
value of V on all boundaries, are specified.

3.1.6 Conductors and the Second Uniqueness Theorem

The simplest way to set the boundary conditions for an electrostatic problem is to
specify the value of V on all surfaces surrounding the region of interest. And this
situation often occurs in practice: In the laboratory, we have conductors connected
to batteries, which maintain a given potential, or to ground, which is the exper-
imentalist’s word for V = 0. However, there are other circumstances in which
we do not know the potential at the boundary, but rather the charges on various
conducting surfaces. Suppose I put charge Qa on the first conductor, Qb on the
second, and so on—I’m not telling you how the charge distributes itself over each
conducting surface, because as soon as I put it on, it moves around in a way I do
not control. And for good measure, let’s say there is some specified charge density
ρ in the region between the conductors. Is the electric field now uniquely deter-
mined? Or are there perhaps a number of different ways the charges could arrange
themselves on their respective conductors, each leading to a different field?

Second uniqueness theorem: In a volume V surrounded by conduc-
tors and containing a specified charge density ρ, the electric field is
uniquely determined if the total charge on each conductor is given
(Fig. 3.6). (The region as a whole can be bounded by another con-
ductor, or else unbounded.)

Proof. Suppose there are two fields satisfying the conditions of the problem. Both
obey Gauss’s law in differential form in the space between the conductors:

∇ · E1 = 1

ε0
ρ, ∇ · E2 = 1

ε0
ρ.



122 Chapter 3 Potentials

ρ
specified

Integration surfaces

Outer boundary-
could be at infinity

Qd

Qb

Qa

Qc

FIGURE 3.6

And both obey Gauss’s law in integral form for a Gaussian surface enclosing each
conductor: ∮

i th conducting
surface

E1 · da = 1

ε0
Qi ,

∮
i th conducting

surface

E2 · da = 1

ε0
Qi .

Likewise, for the outer boundary (whether this is just inside an enclosing conduc-
tor or at infinity),

∮
outer

boundary

E1 · da = 1

ε0
Qtot,

∮
outer

boundary

E2 · da = 1

ε0
Qtot.

As before, we examine the difference

E3 ≡ E1 − E2,

which obeys

∇ · E3 = 0 (3.7)

in the region between the conductors, and
∮

E3 · da = 0 (3.8)

over each boundary surface.
Now there is one final piece of information we must exploit: Although we

do not know how the charge Qi distributes itself over the i th conductor, we do
know that each conductor is an equipotential, and hence V3 is a constant (not
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necessarily the same constant) over each conducting surface. (It need not be zero,
for the potentials V1 and V2 may not be equal—all we know for sure is that both
are constant over any given conductor.) Next comes a trick. Invoking product rule
number 5 (inside front cover), we find that

∇ · (V3E3) = V3(∇ · E3) + E3 · (∇V3) = −(E3)
2.

Here I have used Eq. 3.7, and E3 = −∇V3. Integrating this over V , and applying
the divergence theorem to the left side:

∫
V

∇ · (V3E3) dτ =
∮
S

V3E3 · da = −
∫
V

(E3)
2 dτ.

The surface integral covers all boundaries of the region in question—the con-
ductors and outer boundary. Now V3 is a constant over each surface (if the outer
boundary is infinity, V3 = 0 there), so it comes outside each integral, and what
remains is zero, according to Eq. 3.8. Therefore,

∫
V

(E3)
2 dτ = 0.

But this integrand is never negative; the only way the integral can vanish is if
E3 = 0 everywhere. Consequently, E1 = E2, and the theorem is proved. �

This proof was not easy, and there is a real danger that the theorem itself will
seem more plausible to you than the proof. In case you think the second unique-
ness theorem is “obvious,” consider this example of Purcell’s: Figure 3.7 shows
a simple electrostatic configuration, consisting of four conductors with charges
±Q, situated so that the plusses are near the minuses. It all looks very comfort-
able. Now, what happens if we join them in pairs, by tiny wires, as indicated in
Fig. 3.8? Since the positive charges are very near negative charges (which is where
they like to be) you might well guess that nothing will happen—the configuration
looks stable.

Well, that sounds reasonable, but it’s wrong. The configuration in Fig. 3.8 is
impossible. For there are now effectively two conductors, and the total charge
on each is zero. One possible way to distribute zero charge over these con-
ductors is to have no accumulation of charge anywhere, and hence zero field

+ −

− +

FIGURE 3.7

+ −

− +

FIGURE 3.8
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0 0

0 0

FIGURE 3.9

everywhere (Fig. 3.9). By the second uniqueness theorem, this must be the solu-
tion: The charge will flow down the tiny wires, canceling itself off.

Problem 3.5 Prove that the field is uniquely determined when the charge density ρ

is given and either V or the normal derivative ∂V/∂n is specified on each boundary
surface. Do not assume the boundaries are conductors, or that V is constant over
any given surface.

Problem 3.6 A more elegant proof of the second uniqueness theorem uses Green’s
identity (Prob. 1.61c), with T = U = V3. Supply the details.

3.2 THE METHOD OF IMAGES

3.2.1 The Classic Image Problem

Suppose a point charge q is held a distance d above an infinite grounded con-
ducting plane (Fig. 3.10). Question: What is the potential in the region above the
plane? It’s not just (1/4πε0)q/r, for q will induce a certain amount of negative
charge on the nearby surface of the conductor; the total potential is due in part
to q directly, and in part to this induced charge. But how can we possibly calcu-
late the potential, when we don’t know how much charge is induced or how it is
distributed?

From a mathematical point of view, our problem is to solve Poisson’s equa-
tion in the region z > 0, with a single point charge q at (0, 0, d), subject to the
boundary conditions:

1. V = 0 when z = 0 (since the conducting plane is grounded), and

2. V → 0 far from the charge
(
that is, for x2 + y2 + z2 � d2

)
.

The first uniqueness theorem (actually, its corollary) guarantees that there is only
one function that meets these requirements. If by trick or clever guess we can
discover such a function, it’s got to be the answer.

Trick: Forget about the actual problem; we’re going to study a completely
different situation. This new configuration consists of two point charges, +q at
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y

q

d

x

z

V = 0
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+q
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d

x

z
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(0, 0, d) and −q at (0, 0,−d), and no conducting plane (Fig. 3.11). For this con-
figuration, I can easily write down the potential:

V (x, y, z) = 1

4πε0

[
q√

x2 + y2 + (z − d)2
− q√

x2 + y2 + (z + d)2

]
. (3.9)

(The denominators represent the distances from (x, y, z) to the charges +q and
−q, respectively.) It follows that

1. V = 0 when z = 0,

2. V → 0 for x2 + y2 + z2 � d2,

and the only charge in the region z > 0 is the point charge +q at (0, 0, d). But
these are precisely the conditions of the original problem! Evidently the second
configuration happens to produce exactly the same potential as the first config-
uration, in the “upper” region z ≥ 0. (The “lower” region, z < 0, is completely
different, but who cares? The upper part is all we need.) Conclusion: The poten-
tial of a point charge above an infinite grounded conductor is given by Eq. 3.9, for
z ≥ 0.

Notice the crucial role played by the uniqueness theorem in this argument:
without it, no one would believe this solution, since it was obtained for a com-
pletely different charge distribution. But the uniqueness theorem certifies it: If it
satisfies Poisson’s equation in the region of interest, and assumes the correct value
at the boundaries, then it must be right.

3.2.2 Induced Surface Charge

Now that we know the potential, it is a straightforward matter to compute the
surface charge σ induced on the conductor. According to Eq. 2.49,

σ = −ε0
∂V

∂n
,
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where ∂V/∂n is the normal derivative of V at the surface. In this case the normal
direction is the z direction, so

σ = −ε0
∂V

∂z

∣∣∣∣
z=0

.

From Eq. 3.9,

∂V

∂z
= 1

4πε0

{ −q(z − d)

[x2 + y2 + (z − d)2]3/2
+ q(z + d)

[x2 + y2 + (z + d)2]3/2

}
,

so5

σ(x, y) = −qd

2π(x2 + y2 + d2)3/2
. (3.10)

As expected, the induced charge is negative (assuming q is positive) and greatest
at x = y = 0.

While we’re at it, let’s compute the total induced charge

Q =
∫

σ da.

This integral, over the xy plane, could be done in Cartesian coordinates, with
da = dx dy, but it’s a little easier to use polar coordinates (r, φ), with r2 = x2+y2

and da = r dr dφ. Then

σ(r) = −qd

2π(r2 + d2)3/2
,

and

Q =
∫ 2π

0

∫ ∞

0

−qd

2π(r2 + d2)3/2
r dr dφ = qd√

r2 + d2

∣∣∣∣
∞

0

= −q. (3.11)

The total charge induced on the plane is −q, as (with benefit of hindsight) you
can perhaps convince yourself it had to be.

3.2.3 Force and Energy

The charge q is attracted toward the plane, because of the negative induced charge.
Let’s calculate the force of attraction. Since the potential in the vicinity of q is the
same as in the analog problem (the one with +q and −q but no conductor), so
also is the field and, therefore, the force:

F = − 1

4πε0

q2

(2d)2
ẑ. (3.12)

5For an entirely different derivation of this result, see Prob. 3.38.
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Beware: It is easy to get carried away, and assume that everything is the same
in the two problems. Energy, however, is not the same. With the two point charges
and no conductor, Eq. 2.42 gives

W = − 1

4πε0

q2

2d
. (3.13)

But for a single charge and conducting plane, the energy is half of this:

W = − 1

4πε0

q2

4d
. (3.14)

Why half? Think of the energy stored in the fields (Eq. 2.45):

W = ε0

2

∫
E2 dτ.

In the first case, both the upper region (z > 0) and the lower region (z < 0)

contribute—and by symmetry they contribute equally. But in the second case,
only the upper region contains a nonzero field, and hence the energy is half as
great.6

Of course, one could also determine the energy by calculating the work
required to bring q in from infinity. The force required (to oppose the electri-
cal force in Eq. 3.12) is (1/4πε0)(q2/4z2)ẑ, so

W =
∫ d

∞
F · dl = 1

4πε0

∫ d

∞
q2

4z2
dz

= 1

4πε0

(
−q2

4z

)∣∣∣∣
d

∞
= − 1

4πε0

q2

4d
.

As I move q toward the conductor, I do work only on q. It is true that induced
charge is moving in over the conductor, but this costs me nothing, since the whole
conductor is at potential zero. By contrast, if I simultaneously bring in two point
charges (with no conductor), I do work on both of them, and the total is (again)
twice as great.

3.2.4 Other Image Problems

The method just described is not limited to a single point charge; any station-
ary charge distribution near a grounded conducting plane can be treated in the
same way, by introducing its mirror image—hence the name method of images.
(Remember that the image charges have the opposite sign; this is what guarantees
that the xy plane will be at potential zero.) There are also some exotic problems
that can be handled in similar fashion; the nicest of these is the following.

6For a generalization of this result, see M. M. Taddei, T. N. C. Mendes, and C. Farina, Eur. J. Phys.
30, 965 (2009), and Prob. 3.41b.
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Example 3.2. A point charge q is situated a distance a from the center of a
grounded conducting sphere of radius R (Fig. 3.12). Find the potential outside
the sphere.

q
a

R

V = 0

FIGURE 3.12

a

q'b q

r

θ

r'
r

FIGURE 3.13

Solution
Examine the completely different configuration, consisting of the point charge q
together with another point charge

q ′ = − R

a
q, (3.15)

placed a distance

b = R2

a
(3.16)

to the right of the center of the sphere (Fig. 3.13). No conductor, now—just the
two point charges. The potential of this configuration is

V (r) = 1

4πε0

(
q

r + q ′

r′

)
, (3.17)

where r and r′ are the distances from q and q ′, respectively. Now, it happens (see
Prob. 3.8) that this potential vanishes at all points on the sphere, and therefore fits
the boundary conditions for our original problem, in the exterior region.7

Conclusion: Eq. 3.17 is the potential of a point charge near a grounded con-
ducting sphere. (Notice that b is less than R, so the “image” charge q ′ is safely
inside the sphere—you cannot put image charges in the region where you are cal-
culating V ; that would change ρ, and you’d be solving Poisson’s equation with

7This solution is due to William Thomson (later Lord Kelvin), who published it in 1848, when he
was just 24. It was apparently inspired by a theorem of Apollonius (200 BC) that says the locus of
points with a fixed ratio of distances from two given points is a sphere. See J. C. Maxwell, “Treatise on
Electricity and Magnetism, Vol. I,” Dover, New York, p. 245. I thank Gabriel Karl for this interesting
history.
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the wrong source.) In particular, the force of attraction between the charge and
the sphere is

F = 1

4πε0

qq ′

(a − b)2
= − 1

4πε0

q2 Ra

(a2 − R2)2
. (3.18)

The method of images is delightfully simple . . . when it works. But it is as
much an art as a science, for you must somehow think up just the right “auxil-
iary” configuration, and for most shapes this is forbiddingly complicated, if not
impossible.

Problem 3.7 Find the force on the charge +q in Fig. 3.14. (The xy plane is a
grounded conductor.)

V = 0

y

+q

d

3d

x

z

−2q

FIGURE 3.14

Problem 3.8

(a) Using the law of cosines, show that Eq. 3.17 can be written as follows:

V (r, θ) = 1

4πε0

[
q√

r 2 + a2 − 2ra cos θ
− q√

R2 + (ra/R)2 − 2ra cos θ

]
,

(3.19)

where r and θ are the usual spherical polar coordinates, with the z axis along the
line through q . In this form, it is obvious that V = 0 on the sphere, r = R.

(b) Find the induced surface charge on the sphere, as a function of θ . Integrate this
to get the total induced charge. (What should it be?)

(c) Calculate the energy of this configuration.

Problem 3.9 In Ex. 3.2 we assumed that the conducting sphere was grounded
(V = 0). But with the addition of a second image charge, the same basic model
will handle the case of a sphere at any potential V0 (relative, of course, to infin-
ity). What charge should you use, and where should you put it? Find the force of
attraction between a point charge q and a neutral conducting sphere.
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Problem 3.10 A uniform line charge λ is placed on an infinite straight wire, a dis-!
tance d above a grounded conducting plane. (Let’s say the wire runs parallel to the
x-axis and directly above it, and the conducting plane is the xy plane.)

(a) Find the potential in the region above the plane. [Hint: Refer to Prob. 2.52.]

(b) Find the charge density σ induced on the conducting plane.

Problem 3.11 Two semi-infinite grounded conducting planes meet at right angles.
In the region between them, there is a point charge q , situated as shown in Fig. 3.15.
Set up the image configuration, and calculate the potential in this region. What
charges do you need, and where should they be located? What is the force on q?
How much work did it take to bring q in from infinity? Suppose the planes met
at some angle other than 90◦; would you still be able to solve the problem by the
method of images? If not, for what particular angles does the method work?

xa

y

b q

V = 0

FIGURE 3.15

y

R

−d +d x

−V0

R

+V0

FIGURE 3.16

Problem 3.12 Two long, straight copper pipes, each of radius R, are held a distance!
2d apart. One is at potential V0, the other at −V0 (Fig. 3.16). Find the potential
everywhere. [Hint: Exploit the result of Prob. 2.52.]

3.3 SEPARATION OF VARIABLES

In this section we shall attack Laplace’s equation directly, using the method of
separation of variables, which is the physicist’s favorite tool for solving par-
tial differential equations. The method is applicable in circumstances where the
potential (V ) or the charge density (σ ) is specified on the boundaries of some
region, and we are asked to find the potential in the interior. The basic strategy is
very simple: We look for solutions that are products of functions, each of which
depends on only one of the coordinates. The algebraic details, however, can be
formidable, so I’m going to develop the method through a sequence of examples.
We’ll start with Cartesian coordinates and then do spherical coordinates (I’ll leave
the cylindrical case for you to tackle on your own, in Prob. 3.24).
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+Q −Q

FIGURE 2.51

2.5.4 Capacitors

Suppose we have two conductors, and we put charge +Q on one and −Q on the
other (Fig. 2.51). Since V is constant over a conductor, we can speak unambigu-
ously of the potential difference between them:

V = V+ − V− = −
∫ (+)

(−)

E · dl.

We don’t know how the charge distributes itself over the two conductors, and
calculating the field would be a nightmare, if their shapes are complicated, but
this much we do know: E is proportional to Q. For E is given by Coulomb’s law:

E = 1

4πε0

∫
ρ

r2 r̂ dτ,

so if you double ρ, you double E. [Wait a minute! How do we know that dou-
bling Q (and also −Q) simply doubles ρ? Maybe the charge moves around into
a completely different configuration, quadrupling ρ in some places and halving it
in others, just so the total charge on each conductor is doubled. The fact is that
this concern is unwarranted—doubling Q does double ρ everywhere; it doesn’t
shift the charge around. The proof of this will come in Chapter 3; for now you’ll
just have to trust me.]

Since E is proportional to Q, so also is V . The constant of proportionality is
called the capacitance of the arrangement:

C ≡ Q

V
. (2.53)

Capacitance is a purely geometrical quantity, determined by the sizes, shapes, and
separation of the two conductors. In SI units, C is measured in farads (F); a farad
is a coulomb-per-volt. Actually, this turns out to be inconveniently large; more
practical units are the microfarad (10−6 F) and the picofarad (10−12 F).

Notice that V is, by definition, the potential of the positive conductor less
that of the negative one; likewise, Q is the charge of the positive conductor. Ac-
cordingly, capacitance is an intrinsically positive quantity. (By the way, you will
occasionally hear someone speak of the capacitance of a single conductor. In this
case the “second conductor,” with the negative charge, is an imaginary spherical
shell of infinite radius surrounding the one conductor. It contributes nothing to
the field, so the capacitance is given by Eq. 2.53, where V is the potential with
infinity as the reference point.)
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Example 2.11. Find the capacitance of a parallel-plate capacitor consisting of
two metal surfaces of area A held a distance d apart (Fig. 2.52).

d

A

FIGURE 2.52

Solution
If we put +Q on the top and −Q on the bottom, they will spread out uniformly
over the two surfaces, provided the area is reasonably large and the separation
small.13 The surface charge density, then, is σ = Q/A on the top plate, and so the
field, according to Ex. 2.6, is (1/ε0)Q/A. The potential difference between the
plates is therefore

V = Q

Aε0
d,

and hence

C = Aε0

d
. (2.54)

If, for instance, the plates are square with sides 1 cm long, and they are held 1 mm
apart, then the capacitance is 9 × 10−13 F.

Example 2.12. Find the capacitance of two concentric spherical metal shells,
with radii a and b.

Solution
Place charge +Q on the inner sphere, and −Q on the outer one. The field between
the spheres is

E = 1

4πε0

Q

r2
r̂,

so the potential difference between them is

V = −
∫ a

b
E · dl = − Q

4πε0

∫ a

b

1

r2
dr = Q

4πε0

(
1

a
− 1

b

)
.

13The exact solution is not easy—even for the simpler case of circular plates. See G. T. Carlson and
B. L. Illman, Am. J. Phys. 62, 1099 (1994).
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As promised, V is proportional to Q; the capacitance is

C = Q

V
= 4πε0

ab

(b − a)
.

To “charge up” a capacitor, you have to remove electrons from the positive
plate and carry them to the negative plate. In doing so, you fight against the electric
field, which is pulling them back toward the positive conductor and pushing them
away from the negative one. How much work does it take, then, to charge the
capacitor up to a final amount Q? Suppose that at some intermediate stage in the
process the charge on the positive plate is q, so that the potential difference is
q/C . According to Eq. 2.38, the work you must do to transport the next piece of
charge, dq, is

dW =
( q

C

)
dq.

The total work necessary, then, to go from q = 0 to q = Q, is

W =
∫ Q

0

( q

C

)
dq = 1

2

Q2

C
,

or, since Q = CV ,

W = 1

2
CV 2, (2.55)

where V is the final potential of the capacitor.

Problem 2.43 Find the capacitance per unit length of two coaxial metal cylindrical
tubes, of radii a and b (Fig. 2.53).

b

a

FIGURE 2.53

Problem 2.44 Suppose the plates of a parallel-plate capacitor move closer together
by an infinitesimal distance ε, as a result of their mutual attraction.

(a) Use Eq. 2.52 to express the work done by electrostatic forces, in terms of the
field E , and the area of the plates, A.

(b) Use Eq. 2.46 to express the energy lost by the field in this process.

(This problem is supposed to be easy, but it contains the embryo of an alternative
derivation of Eq. 2.52, using conservation of energy.)
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More Problems on Chapter 2

Problem 2.45 Find the electric field at a height z above the center of a square sheet
(side a) carrying a uniform surface charge σ . Check your result for the limiting
cases a → ∞ and z � a.[

Answer:(σ/2ε0)
{
(4/π) tan−1

√
1 + (a2/2z2) − 1

}]

Problem 2.46 If the electric field in some region is given (in spherical coordinates)
by the expression

E(r) = k

r

[
3 r̂ + 2 sin θ cos θ sin φ θ̂ + sin θ cos φ φ̂

]
,

for some constant k, what is the charge density? [Answer: 3kε0(1 + cos 2θ sin φ)/r 2]

Problem 2.47 Find the net force that the southern hemisphere of a uniformly
charged solid sphere exerts on the northern hemisphere. Express your answer in
terms of the radius R and the total charge Q. [Answer: (1/4πε0)(3Q2/16R2)]

Problem 2.48 An inverted hemispherical bowl of radius R carries a uniform surface
charge density σ . Find the potential difference between the “north pole” and the
center. [Answer: (Rσ/2ε0)(

√
2 − 1)]

Problem 2.49 A sphere of radius R carries a charge density ρ(r) = kr (where k is
a constant). Find the energy of the configuration. Check your answer by calculating
it in at least two different ways. [Answer: πk2 R7/7ε0]

Problem 2.50 The electric potential of some configuration is given by the expression

V (r) = A
e−λr

r
,

where A and λ are constants. Find the electric field E(r), the charge density ρ(r),
and the total charge Q. [Answer: ρ = ε0 A(4πδ3(r) − λ2e−λr/r)]

Problem 2.51 Find the potential on the rim of a uniformly charged disk (radius R,
charge density σ ). [Hint: First show that V = k(σ R/πε0), for some dimensionless
number k, which you can express as an integral. Then evaluate k analytically, if you
can, or by computer.]

Problem 2.52 Two infinitely long wires running parallel to the x axis carry uniform!
charge densities +λ and −λ (Fig. 2.54).

y

x

z

a a

−λ

+λ

FIGURE 2.54
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(a) Find the potential at any point (x, y, z), using the origin as your reference.

(b) Show that the equipotential surfaces are circular cylinders, and locate the axis
and radius of the cylinder corresponding to a given potential V0.

Problem 2.53 In a vacuum diode, electrons are “boiled” off a hot cathode, at po-!
tential zero, and accelerated across a gap to the anode, which is held at positive
potential V0. The cloud of moving electrons within the gap (called space charge)
quickly builds up to the point where it reduces the field at the surface of the cathode
to zero. From then on, a steady current I flows between the plates.

Suppose the plates are large relative to the separation (A � d2 in Fig. 2.55), so
that edge effects can be neglected. Then V , ρ, and v (the speed of the electrons) are
all functions of x alone.

x

A
Electron

Cathode
(V = 0)

Anode
(V0)

d

FIGURE 2.55

(a) Write Poisson’s equation for the region between the plates.

(b) Assuming the electrons start from rest at the cathode, what is their speed at point
x , where the potential is V (x)?

(c) In the steady state, I is independent of x . What, then, is the relation between
ρ and v?

(d) Use these three results to obtain a differential equation for V , by eliminating
ρ and v.

(e) Solve this equation for V as a function of x , V0, and d. Plot V (x), and compare
it to the potential without space-charge. Also, find ρ and v as functions of x .

(f) Show that

I = K V 3/2
0 , (2.56)

and find the constant K . (Equation 2.56 is called the Child-Langmuir law.
It holds for other geometries as well, whenever space-charge limits the current.
Notice that the space-charge limited diode is nonlinear—it does not obey Ohm’s
law.)
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Problem 2.54 Imagine that new and extraordinarily precise measurements have re-!
vealed an error in Coulomb’s law. The actual force of interaction between two point
charges is found to be

F = 1

4πε0

q1q2

r2

(
1 + r

λ

)
e−(r/λ)r̂,

where λ is a new constant of nature (it has dimensions of length, obviously, and is a
huge number—say half the radius of the known universe—so that the correction is
small, which is why no one ever noticed the discrepancy before). You are charged
with the task of reformulating electrostatics to accommodate the new discovery.
Assume the principle of superposition still holds.

(a) What is the electric field of a charge distribution ρ (replacing Eq. 2.8)?

(b) Does this electric field admit a scalar potential? Explain briefly how you reached
your conclusion. (No formal proof necessary—just a persuasive argument.)

(c) Find the potential of a point charge q—the analog to Eq. 2.26. (If your answer
to (b) was “no,” better go back and change it!) Use ∞ as your reference point.

(d) For a point charge q at the origin, show that

∮
S

E · da + 1

λ2

∫
V

V dτ = 1

ε0
q,

where S is the surface, V the volume, of any sphere centered at q.

(e) Show that this result generalizes:

∮
S

E · da + 1

λ2

∫
V

V dτ = 1

ε0
Qenc,

for any charge distribution. (This is the next best thing to Gauss’s Law, in the
new “electrostatics.”)

(f) Draw the triangle diagram (like Fig. 2.35) for this world, putting in all the ap-
propriate formulas. (Think of Poisson’s equation as the formula for ρ in terms
of V , and Gauss’s law (differential form) as an equation for ρ in terms of E.)

(g) Show that some of the charge on a conductor distributes itself (uniformly!) over
the volume, with the remainder on the surface. [Hint: E is still zero, inside a
conductor.]

Problem 2.55 Suppose an electric field E(x, y, z) has the form

Ex = ax, Ey = 0, Ez = 0

where a is a constant. What is the charge density? How do you account for the fact
that the field points in a particular direction, when the charge density is uniform?
[This is a more subtle problem than it looks, and worthy of careful thought.]
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Problem 2.56 All of electrostatics follows from the 1/r 2 character of Coulomb’s
law, together with the principle of superposition. An analogous theory can therefore
be constructed for Newton’s law of universal gravitation. What is the gravitational
energy of a sphere, of mass M and radius R, assuming the density is uniform?
Use your result to estimate the gravitational energy of the sun (look up the relevant
numbers). Note that the energy is negative—masses attract, whereas (like) electric
charges repel. As the matter “falls in,” to create the sun, its energy is converted into
other forms (typically thermal), and it is subsequently released in the form of radia-
tion. The sun radiates at a rate of 3.86 × 1026 W; if all this came from gravitational
energy, how long would the sun last? [The sun is in fact much older than that, so
evidently this is not the source of its power.14]

Problem 2.57 We know that the charge on a conductor goes to the surface, but just!
how it distributes itself there is not easy to determine. One famous example in which
the surface charge density can be calculated explicitly is the ellipsoid:

x2

a2
+ y2

b2
+ z2

c2
= 1.

In this case15

σ = Q

4πabc

(
x2

a4
+ y2

b4
+ z2

c4

)−1/2

, (2.57)

where Q is the total charge. By choosing appropriate values for a, b, and c, obtain
(from Eq. 2.57): (a) the net (both sides) surface charge density σ(r) on a circular
disk of radius R; (b) the net surface charge density σ(x) on an infinite conducting
“ribbon” in the xy plane, which straddles the y axis from x = −a to x = a (let �

be the total charge per unit length of ribbon); (c) the net charge per unit length λ(x)

on a conducting “needle,” running from x = −a to x = a. In each case, sketch the
graph of your result.

Problem 2.58

(a) Consider an equilateral triangle, inscribed in a circle of radius a, with a point
charge q at each vertex. The electric field is zero (obviously) at the center, but
(surprisingly) there are three other points inside the triangle where the field is
zero. Where are they? [Answer: r = 0.285 a—you’ll probably need a computer
to get it.]

(b) For a regular n-sided polygon there are n points (in addition to the center) where
the field is zero.16 Find their distance from the center for n = 4 and n = 5. What
do you suppose happens as n → ∞?

14Lord Kelvin used this argument to counter Darwin’s theory of evolution, which called for a much
older Earth. Of course, we now know that the source of the Sun’s energy is nuclear fusion, not gravity.
15For the derivation (which is a real tour de force), see W. R. Smythe, Static and Dynamic Electricity,
3rd ed. (New York: Hemisphere, 1989), Sect. 5.02.
16S. D. Baker, Am. J. Phys. 52, 165 (1984); D. Kiang and D. A. Tindall, Am. J. Phys. 53, 593 (1985).
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Problem 2.59 Prove or disprove (with a counterexample) the following

Theorem: Suppose a conductor carrying a net charge Q, when placed in an
external electric field Ee, experiences a force F; if the external field is now
reversed (Ee → −Ee), the force also reverses (F → −F).

What if we stipulate that the external field is uniform?

Problem 2.60 A point charge q is at the center of an uncharged spherical conducting
shell, of inner radius a and outer radius b. Question: How much work would it take
to move the charge out to infinity (through a tiny hole drilled in the shell)? [Answer:
(q2/8πε0)(1/a − 1/b).]

Problem 2.61 What is the minimum-energy configuration for a system of N equal
point charges placed on or inside a circle of radius R?17 Because the charge on
a conductor goes to the surface, you might think the N charges would arrange
themselves (uniformly) around the circumference. Show (to the contrary) that for
N = 12 it is better to place 11 on the circumference and one at the center. How about
for N = 11 (is the energy lower if you put all 11 around the circumference, or if you
put 10 on the circumference and one at the center)? [Hint: Do it numerically—you’ll
need at least 4 significant digits. Express all energies as multiples of q2/4πε0 R]

17M. G. Calkin, D. Kiang, and D. A. Tindall, Am. H. Phys. 55, 157 (1987).
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3 Potentials

3.1 LAPLACE’S EQUATION

3.1.1 Introduction

The primary task of electrostatics is to find the electric field of a given stationary
charge distribution. In principle, this purpose is accomplished by Coulomb’s law,
in the form of Eq. 2.8:

E(r) = 1

4πε0

∫ r̂
r2 ρ(r′) dτ ′. (3.1)

Unfortunately, integrals of this type can be difficult to calculate for any but the
simplest charge configurations. Occasionally we can get around this by exploiting
symmetry and using Gauss’s law, but ordinarily the best strategy is first to calcu-
late the potential, V , which is given by the somewhat more tractable Eq. 2.29:

V (r) = 1

4πε0

∫
1

r ρ(r′) dτ ′. (3.2)

Still, even this integral is often too tough to handle analytically. Moreover, in prob-
lems involving conductors ρ itself may not be known in advance; since charge is
free to move around, the only thing we control directly is the total charge (or
perhaps the potential) of each conductor.

In such cases, it is fruitful to recast the problem in differential form, using
Poisson’s equation (2.24),

∇2V = − 1

ε0
ρ, (3.3)

which, together with appropriate boundary conditions, is equivalent to Eq. 3.2.
Very often, in fact, we are interested in finding the potential in a region where
ρ = 0. (If ρ = 0 everywhere, of course, then V = 0, and there is nothing further
to say—that’s not what I mean. There may be plenty of charge elsewhere, but
we’re confining our attention to places where there is no charge.) In this case,
Poisson’s equation reduces to Laplace’s equation:

∇2V = 0, (3.4)
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